It is well known that the heat kernel in the hyperbolic space has a different behavior for large times than the one in the Euclidean space. The main purpose of this paper is to study its effect on the positive solutions of Cauchy problems with power nonlinearities. Existence and non-existence results for local solutions are derived. Emphasis is put on their long time behavior and on Fujita's phenomenon. To have the same situation as for the Cauchy problem in R-N, namely finite time blow up for all solutions if the exponent is smaller than a critical value and existence of global solutions only for powers above the critical exponent, we must introduce a weight depending exponentially on the time. In this respect the situation is similar to problems in bounded domains with Dirichlet boundary conditions. Important tools are estimates for the heat kernel in the hyperbolic space and comparison principles. (C) 2011 Published by Elsevier Inc
ABSTRACT. Existence of stationarystates is established by means of the method of upper and lower solutions.The structure of the solution set is discussed and a uniqueness property for certain classes is proved by a generalized maximum principle. It is then shown that all solutions of the parabolic equation converge to a stationary state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.