SUMMARY1. Alien plant species are rapidly spreading in aquatic ecosystems around the world, causing major ecological effects. They are typically introduced by humans, after which natural vectors facilitate their further spread. Migratory waterbirds have long been recognised as important dispersal vectors for native and aquatic plants, yet little is known about their role in the spread of alien species. 2. We determined experimentally the potential for long-distance dispersal of native and alien wetland plants in Europe by two abundant waterfowl: mallards Anas platyrhynchos and greylag geese Anser anser. We fed seeds from two plants alien to Europe and two native plants to 10 individuals of each bird species, testing for the effects of bird and plant species on the potential for dispersal. 3. Intact seeds were retrieved from faeces for up to 4 days after ingestion. The proportion of seeds retrieved intact varied significantly between plant, but not bird, species. Retrieval was highest for the invasive water primrose Ludwigia grandiflora (>35% of ingested seeds), lowest for the invasive cordgrass Spartina densiflora (<3%) and intermediate for the native glasswort Arthrocnemum macrostachyum and seablite Suaeda vera (5-10%). 4. Seed retrieval patterns over time varied between both plant and bird species. Contrary to expectations, seeds were retained in the gut for longer in the smaller mallards. No Spartina seeds germinated after retention for over 8 h, whereas some seeds of the other species germinated even after retention for 72 h. Germinability was reduced by gut passage for Ludwigia and Arthrocnemum seeds. Ludwigia seeds recovered from geese were more likely to germinate than those recovered from mallards. Time to germination was reduced by gut passage for Spartina and Ludwigia, but increased with retention time. 5. Ducks and geese evidently have the potential for long-distance transport of alien and native plant seeds, with maximal dispersal distances of well over 1000 km. The much greater potential of Ludwigia than Spartina for dispersal by waterfowl is consistent with its faster expansion across Europe. Maximum retention times of wetland seeds have been underestimated in previous experimental studies that lasted only 1-2 days. Contrary to previous studies, wetland plants with large seeds, such as Ludwigia, can still show high potential for long-distance dispersal. More attention should be paid to the role of waterbirds as vectors of alien plants and to the role of migratory geese as vectors of plants in general.
Background and Aims Hydrological disconnection, especially in a Mediterranean climate, creates coastal saltmarshes with an annual cycle of flooding that are unlike tidally inundated systems. Winter rainfall produces long, continuous hydroperiods, alternating with continuous exposure caused by evaporation in warm, rain-free summers. We aimed to distinguish the effects of elevation, hydroperiod and salinity on annual and perennial halophytes in such a system. Methods We recorded vegetation and sediment salinity in permanent quadrats on a marsh in the Doñana National Park, Spain, over seven consecutive years with widely differing rainfall. Elevation was determined from LIDAR data and the duration of the annual hydroperiod from satellite imagery. The independent effects of collaterally varying elevation, hydroperiod and salinity on species distribution were examined using generalized linear models and hierarchical partitioning. Key Results Both hydroperiod and salinity were inversely related to elevation but interannual fluctuations in rainfall facilitated discrimination of independent effects of the three collaterally varying factors on halophyte distribution. Perennial distribution was strongly structured by elevation, whereas many annual species were more sensitive to hydroperiod. The independent effects of salinity varied according to individual species’ salt tolerance from positive to negative. Thus life-history and, in the case of annuals, phenology were important in determining the relative impact of elevation and hydroperiod. Conclusions The consequences of elevation for halophyte distribution in seasonally flooded saltmarshes are fundamentally different from those in tidal marshes, because protracted and frequent flooding regimes require different adaptations, and because of the unpredictability of flooding from year to year. These differences could explain greater species diversity in non-tidal marshes and the absence of key saltmarsh species prominent in tidal marshes. The vegetation of non-tidal marshes will be particularly susceptible to the more extreme annual cycles of temperature and rainfall predicted for Mediterranean climates.
In a mediterranean climate, the vegetation of embanked salt marshes can vary considerably in time and space to obscure the definition of reference condition for restoration purposes. The aim of our study was to find a basis for defining reference vegetation for the reinstatement of a wetland hydrological regime on abandoned agricultural land. We investigated five reference sites surrounding a 2,668 ha restoration site in the Doñana National Park (southwest Spain). Environmental conditions were monitored on a sampling grid for seven years: surface elevation and hydroperiod were mapped (using LIDAR -Light Detection and Ranging- and satellite imagery, respectively) and rainfall, soil salinity and soil pH were recorded. The reference sites collectively encompassed the range of elevation and environmental conditions at the restoration site, although none individually was representative. The vegetation at the reference sites was sampled annually at fixed grid points. Hierarchical cluster analyses identified assemblages of perennial and annual species that were differently distributed among the reference sites. BIO-ENV analysis showed that the distribution of perennial assemblages was determined by elevation, annual hydroperiod, and salinity. More labile annual assemblages were loosely associated with particular perennial ones. Species composition fluctuated over the seven years, in concert with rainfall and hydroperiod, but showed no directional change. Understanding the hydro-chemical drivers of spatio-temporal variation in vegetation across multiple sites has established a rationale for defining reference conditions for large, heterogeneous wetland restoration sites
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.