In the software development field, software practitioners expend between 30% and 40% more effort than is predicted. Accordingly, researchers have proposed new models for estimating the development effort such that the estimations of these models are close to actual ones. In this study, an application based on a new neurofuzzy system (NFS) is analyzed. The NFS accuracy was compared to that of a statistical multiple linear regression (MLR) model. The criterion for evaluating the accuracy of estimation models has mainly been the Magnitude of Relative Error (MRE), however, it was recently found that MRE is asymmetric, and the use of Absolute Residuals (AR) has been proposed, therefore, in this study, the accuracy results of the NFS and MLR were based on AR. After a statistical paired t-test was performed, results showed that accuracy of the New-NFS is statistically better than that of the MLR at the 99% confidence level. It can be concluded that a new-NFS could be used for predicting the effort of software development projects when they have been individually developed on a disciplined process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.