The existence of the Kereta Rel Listrik Commuter Line as the backbone of transportation in the Jakarta - Bogor - Depok - Tangerang - Bekasi - Banten area has a very important role for commuter mobility around Daerah Khusus Ibukota Jakarta. With an average number of 1.1 million passengers per day, Kereta Rel Listrik is one of the factors supporting Indonesia's economy and growth in various sectors. On the other hand, the Covid-19 pandemic that hit the world caused restrictions on human movement which resulted in a decline in all economic sectors. The purpose of this research is to obtain optimal train schedule recommendations for the operation of the Kereta Rel Listrik Commuter Line in the Rangkasbitung - Tanah Abang service to carry passengers optimally while adhering to the physical distancing protocol set by the Minister of Transportation to prevent the wider spread of Covid-19. With such a large amount of data that must be processed, Exploratory Data Analysis is one of the choices we take to process the above data to get satisfactory results.
Penerapan Automatic Fare Collection (AFC) pada KA Commuter Line dapat memberikan pengetahuan baru dalam melakukan navigasi antar jalur KA Commuter Line dengan data perjalanan Commuter Line secara real. Sistem AFC memungkinkan manajemen untuk memperoleh data rinci dalam jumlah besar mengenai rute setiap komuter setiap hari. Salah satu tantangan yang dihadapi dalam menggunakan big data di AFC adalah ekstraksi data perilaku penumpang angkutan. Perilaku penumpang Commuter Line merupakan faktor yang sangat penting bagi operator untuk mengambil keputusan yang tepat. Penelitian ini menggunakan metode association rules untuk mengekstrak data AFC guna menghasilkan informasi yang baik dan memahami perilaku komuter Jabodetabek. Hasil penelitian menunjukkan bahwa metode association rules dapat mengekstraksi data AFC dan menghasilkan aturan asosiasi yang kuat pada perilaku komuter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.