Road freight transport is believed by many to be the first transport domain in which driverless (DL) vehicles will have a significant impact. However, in current literature almost no attention has been given to how the diffusion of DL trucks might occur and how it might affect the transport system. To make predictions on the market uptake and to model impacts of DL truck deployment, valid cost estimates of DL truck operations are crucial. In this paper, an analysis of costs and cost structures for DL truck operations, including indicative numerical cost estimates, is presented. The total cost of ownership for DL trucks compared with that for manually driven (MD) trucks has been analyzed for four different truck types (16-, 24-, 40-, and 64-ton trucks), for three scenarios reflecting pessimistic, intermediate, and optimistic assumptions on economic impacts of driving automation based on current literature. The results indicate that DL trucks may enable substantial cost savings compared with the MD truck baseline. In the base (intermediate) scenario, costs per 1,000 ton-kilometer decrease by 45%, 37%, 33%, and 29% for 16-, 24-, 40-, and 60-ton trucks, respectively. The findings confirm the established view in the literature that freight transport is a highly attractive area for DL vehicles because of the potential economic benefits.
Road freight transport is a key function of modern societies. At the same time, road freight transport accounts for significant emissions. Digitalization, including automation, digitized information, and artificial intelligence, provide opportunities to improve efficiency, reduce costs, and increase service levels in road freight transport. Digitalization may also radically change the business ecosystem in the sector. In this paper, the question, “How will digitalization change the road freight transport landscape?” is addressed by developing four exploratory future scenarios, using Sweden as a case study. The results are based on input from 52 experts. For each of the four scenarios, the impacts on the road freight transport sector are investigated, and opportunities and barriers to achieving a sustainable transportation system in each of the scenarios are discussed. In all scenarios, an increase in vehicle kilometers traveled is predicted, and in three of the four scenarios, significant increases in recycling and urban freight flows are predicted. The scenario development process highlighted how there are important uncertainties in the development of the society that will be highly important for the development of the digitized freight transport landscape. One example is the sustainability paradigm, which was identified as a strategic uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.