The combined isotropic‐kinematic hardening model enables the description of the cyclic transient elastic‐plastic material behaviour of steel. However, the determination of the material model parameters and understanding of their influence on the material response can be a challenging task. This study deals with the individual steps of the material model calibration for the simulation of thin electrical steel sheets under cyclic loading. Specific recommendations are made for the determination of kinematic and isotropic hardening material parameters. In particular, the isotropic hardening evolution is described by Voce's exponential law and a simple multilinear approach. Based on the multilinear approach, which allows for different slopes in the evolution of the yield surface size, an alternative calibration of the isotropic hardening component is proposed. As a result, the presence of the yield plateau in the first half cycle can be accurately captured, while convergence issues in the material model definition for numerical simulations can be avoided. The comparison of simulated load cycles with experimental cyclic tests shows a good agreement, which indicates the suitability of the proposed material model calibration for electrical steel.
The carbon content of steel affects many of its essential properties, e.g., hardness and mechanical strength. In the powder bed fusion process of metals using a laser beam (PBF-LB/M), usually, pre-alloyed metal powder is solidified layer-by-layer using a laser beam to create parts. A reduction of the carbon content in steels is observed during this process. This study examines adding carbon particles to the metal powder and in situ alloying in the PBF-LB/M process as a countermeasure. Suitable carbon particles are selected and their effect on the particle size distribution and homogeneity of the mixtures is analysed. The workability in PBF-LB is then shown. This is followed by an evaluation of the resulting mechanical properties (hardness and mechanical strength) and microstructure in the as-built state and the state after heat treatment. Furthermore, potential use cases like multi-material or functionally graded parts are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.