A detailed comparative study on the synthesis process of coral-like CuO/Cu2O nanorods (NRs) and nanopolycrystals (NPCs) fabricated on Cu foil employing aqueous electrolyte via potentiostatic (POT) and galvanostatic (GAL) modes is discussed. The structural, morphological, thermal, compositional, and molecular vibration of the prepared CuO/Cu2O nanostructures was characterized by XRD, HRSEM, TG/DTA, FTIR, and EDX techniques. XRD analysis confirmed the crystalline phase of the formation of monoclinic CuO and cubic Cu2O nanostructures with well-defined morphology. The average particle size was found to be 21.52 nm and 26.59 nm for NRs (POT) and NPCs (GAL), respectively, and this result is corroborated from the HRSEM analysis. POT synthesized nanoparticle depicted a higher thermal stability up to 600°C implying that the potentiostatically grown coral-like NRs exhibit a good crystallinity and well-ordered morphology.
In this study, visible-light-driven ZnO microrod-rGO heterojunction composites were successfully synthesized via a facile and scalable hydrothermal process. The prepared photocatalyst heterojunction was examined using different techniques including XRD, SEM, FTIR, UV-Vis spectroscopy, and TGA to reveal their crystal phase, morphology, and other optical properties. The photocatalytic performance of the obtained ZnO-rGO composites was measured by the photodegradation of phenol under visible light illumination. The addition of graphene over the catalyst exhibited an enhanced photocatalytic activity for phenol degradation due to its high surface area and decreasing rate of electron-hole separation. Kinetic studies proved that the degradation of phenol process happened by following the pseudo-first-order kinetic model. The effective conditions for degradation of phenol using ZnO-rGO composite were 0.2 g L-1catalyst dose, pH -4, and initial concentration 20 ppm of phenol solution. Comparing with ZnO microrods, the heterojunction composite degraded the organic pollutants of phenol solution up to 84.2% of efficiency displaying the highest photocatalytic activity, whereas urchin-like ZnO catalyst exhibited much less photocatalytic activity for phenol degradation under visible light irradiation. This result envisages immense properties, showing a great potential industrial application for the removal of phenolic wastewater.
To enhance reusability and to maintain higher efficiency in degradation, Mn3O4/rGO nanocomposites were synthesized by a facile thermal treatment. Initially, Mn3O4 nanoparticles were prepared and analyzed by powder XRD and HR-SEM. The composition of manganese oxide was varied to obtain different nanocomposites. The Mn3O4 ions were found to be well anchored onto the rGO surface. The obtained samples were taken for the photodegradation studies with phenol as the pollutant. Under a dynamic mode, the absorption efficiency was found to be maximum for the MnsR0.75 sample for phenol.
In this paper, Reduced Graphene Oxide (rGO) / ZnFe 2 O 4 (rZnF) nanocomposite is synthesized by a simple hydrothermal method and employed as a counter electrode (CE) material for tri-iodide redox reactions in Dye sensitized solar cells (DSSC) to replace the traditional high cost platinum (Pt) CE. X-ray diffraction analysis (XRD) and High resolution Transmission electron microscopy (HR-TEM), clearly indicated the formation of rZnF nanocomposite and also amorphous rGO sheets were smoothly distributed on the surface of ZnFe 2 O 4 (ZnF) nanostructure. The rZnF-50 CE shows excellent electro catalytic activity toward I 3 − reduction, which has simultaneously been con rmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. A DSSC developed by rZnF-50 CE (η = 8.71%) obtained quite higher than the Pt (η = 8.53%) based CE under the same condition. The superior performances of rZnF-50 CE due to addition of graphene in to Spinel (ZnF) nanostructure results in creation of highly active electrochemical sites, fast electron transport linkage between CE and electrolyte. Thus it's a promising low cost CE material for DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.