Abstract. A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus-or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/l of blood using DNA prepared from 25-l blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.Microscopy is the method of choice for the diagnosis of malaria in endemic areas because it is an inexpensive and rapid method of detection. Correct identification of the four species of Plasmodium causing human malaria and the level of detection by microscopy depends on a number of factors, including the experience of the microscopist, proper staining of the slides, appropriate maintenance of microscopes, and the time spent examining each slide. At best, the sensitivity of detection by microscopy is approximately 10-30 parasites/l of blood. 1 However, this level of detection is normally not attained in malaria-endemic areas and particularly during epidemiologic studies when many samples need to be screened in a relatively short time. Thus, incorrect speciation is common and mixed infections and low levels of parasitemia may be missed.To overcome some of the limitations of microscopy for detection of malaria, polymerase chain reaction (PCR)-based assays have been developed for the detection and identification of malaria parasites. These methods have proved to be more specific and sensitive than conventional microscopy and some are reported to be able to detect as few as one parasite/l of blood.2-6 However, to attain such a high sensitivity, blood samples collected from individuals have to be processed immediately or stored at low temperatures and the steps involved in DNA template preparation were multistep, often requiring biohazardous chemicals. Since malaria remains a problem of underdeveloped and often remote areas of the world, it is important to couple PCRbased assays with simple sampling and DNA extraction methods to maximize the value of PCR assays. In a previous study, we coupled the nested PCR assay of Snounou and others 3 to blood collection on filter papers and a simple DNA e...
BackgroundMany countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting.MethodsDuring the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared.ResultsA total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections.ConclusionAsymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
BackgroundIn March 2008, the Solomon Islands and Vanuatu governments raised the goal of their National Malaria Programmes from control to elimination. Vector control measures, such as indoor residual spraying (IRS) and long-lasting insecticidal bed nets (LLINs) are key integral components of this programme. Compliance with these interventions is dependent on their acceptability and on the socio-cultural context of the local population. These factors need to be investigated locally prior to programme implementation.MethodTwelve focus group discussions (FGDs) were carried out in Malaita and Temotu Provinces, Solomon Islands in 2008. These discussions explored user perceptions of acceptability and preference for three brands of long-lasting insecticide-treated bed nets (LLINs) and identified a number of barriers to their proper and consistent use.ResultsMosquito nuisance and perceived threat of malaria were the main determinants of bed net use. Knowledge of malaria and the means to prevent it were not sufficient to guarantee compliance with LLIN use. Factors such as climate, work and evening social activities impact on the use of bed nets, particularly in men. LLIN acceptability plays a varying role in compliance with their use in villages involved in this study. Participants in areas of reported high and year round mosquito nuisance and perceived threat of malaria reported LLIN use regardless of any reported unfavourable characteristics. Those in areas of low or seasonal mosquito nuisance were more likely to describe the unfavourable characteristics of LLINs as reasons for their intermittent or non-compliance. The main criterion for LLIN brand acceptability was effectiveness in preventing mosquito bites and malaria. Discussions highlighted considerable confusion around LLIN care and washing which may be impacting on their effectiveness and reducing their acceptability in Solomon Islands.ConclusionProviding LLINs that are acceptable will be more important for improving compliance in areas of low or seasonal mosquito nuisance and malaria transmission. The implications of these findings on malaria elimination in Solomon Islands are discussed.
BackgroundIn 2009, Santa Isabel Province in the Solomon Islands embarked on a malaria elimination programme. However, very little is known in the Province about the anopheline fauna, which species are vectors, their bionomics and how they may respond to intensified intervention measures. The purpose of this study was to provide baseline data on the malaria vectors and to ascertain the possibility of successfully eliminating malaria using the existing conventional vector control measures, such as indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN).MethodsEntomological surveys were undertaken during October 2009. To determine species composition and distribution larval surveys were conducted across on the whole island. For malaria transmission studies, adult anophelines were sampled using human landing catches from two villages - one coastal and one inland.ResultsFive Anopheles species were found on Santa Isabel: Anopheles farauti, Anopheles hinesorum, Anopheles lungae, Anopheles solomonis, and Anopheles nataliae. Anopheles hinesorum was the most widespread species. Anopheles farauti was abundant, but found only on the coast. Anopheles punctulatus and Anopheles koliensis were not found. Anopheles farauti was the only species found biting in the coastal village, it was incriminated as a vector in this study; it fed early in the night but equally so indoors and outdoors, and had a low survival rate. Anopheles solomonis was the main species biting humans in the inland village, it was extremely exophagic, with low survival rates, and readily fed on pigs.ConclusionThe disappearance of the two major vectors, An. punctulatus and An. koliensis, from Santa Isabel and the predominance of An. hinesorum, a non-vector species may facilitate malaria elimination measures. Anopheles farauti was identified as the main coastal vector with An. solomonis as a possible inland vector. The behaviour of An. solomonis is novel as it has not been previously found biting humans in any numbers. Both species appear to be short-lived, a characteristic that will limit their transmission potential. The early night feeding behaviour and a degree of outdoor biting seen in An. farauti and particularly in An. solomonis will require that their response to IRS and LLIN be closely monitored. In coastal villages, where large, favourable breeding sites allow for high numbers of An. farauti may require the addition of larval control to achieve elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.