A SalmoneUla gene encoding a cytolysin has been identified by screening for hemolysis on blood agar. DNA sequence analyses together with genetic mapping in Salmonella suggest that it is unrelated to other toxins or hemolysins. The gene (slyA) is present in every strain of Salmonella examined, in Shigela, and in enteroinvasive Escherichia coli but not in other Enterobacteriaceae. SlyA (salmolysin) purified from a derivative of the original clone has hemolytic and cytolytic activity and has a molecular weight predicted by the DNA sequence. The median lethal dose and infection kinetics in mice suggest that the toxin is required for virulence and facilitates SalmoneUa survival within mouse peritoneal macrophages.
The haemolysin protein (HlyA) of Escherichia coli contains 11 tandemly repeated sequences consisting of 9 amino acids each between amino acids 739 and 849 of HlyA. We removed, by oligonucleotide-directed mutagenesis, different single repeats and combinations of several repeats. The resulting mutant proteins were perfectly stable in E. coli and were secreted with the same efficiency as the wild-type HlyA. HlyA proteins which had lost a single repeat only were still haemolytically active (in the presence of HlyC) but required elevated levels of Ca2+ for activity, as compared to the wild-type haemolysin. Removal of three or more repeats led to the complete loss of the haemolytic activity even in the presence of high Ca2+ concentrations. The mutant haemolysins were unable to compete with the wild-type haemolysin for binding to erythrocytes at low Ca2+ concentrations but could still generate ion-permeable channels in artificial lipid bilayer membranes formed of plant asolectin, even in the complete absence of Ca2+. These data indicate that the repeat domain of haemolysin is responsible for Ca2+-dependent binding of haemolysin to the erythrocyte membrane. A model for the possible functional role of Ca2+ in haemolysis is presented.
SummaryEscherichia coli K-12 harbours a chromosomal gene, clyA (sheA, hlyE ), that encodes a haemolytic 34 kDa protein. Recombinant E. coli overexpressing the cloned clyA gene accumulated this haemolysin in the periplasm and released only very small amounts of it into the external medium. The secretion of ClyA was confined to the log phase and paralleled by the partial release of several other periplasmic proteins. Sequencing of ClyA revealed the translational start point of the clyA gene and demonstrated that the clyA gene product is not N-terminally processed during transport. The transcription of clyA from its native promoter region was positively controlled by SlyA, a regulatory protein found in E. coli, Salmonella typhimurium and other Enterobacteriaceae. SlyA-controlled transcription started predominantly 72 bp upstream from clyA, as shown by primer extension. The corresponding putative promoter contains an unusual ¹10 sequence (TATGAAT) that is separated from a conventional ¹35 sequence by a GC-rich spacer. Site-directed deletion of the G in the ¹10 sequence abrogated the SlyA requirement for strong ClyA production, whereas a reduction in the GþC content of the spacer diminished the capability of SlyA to activate the clyA expression. Osmotic protection assays and lipid bilayer experiments suggested that ClyA forms stable, moderately cation-selective transmembrane pores that have a diameter of about 2.5-3 nm.
A chromosomal fragment from Salmonella typhimurium, when cloned in Escherichia coli, generates a haemolytic phenotype. This fragment carries two genes, termed slyA and slyB. The expression of slyA is sufficient for the haemolytic phenotype. The haemolytic activity of E. coli carrying multiple copies of slyA is found mainly in the cytoplasm, with some in the periplasm of cells grown to stationary phase, but overexpression of SlyB, a 15 kDa lipoprotein probably located in the outer membrane, may lead to enhanced, albeit unspecific, release of the haemolytic activity into the medium. Polyclonal antibodies raised against a purified SlyA-HlyA fusion protein identified the overexpressed monomeric 17 kDa SlyA protein mainly in the cytoplasm of E. coli grown to stationary phase, although smaller amounts were also found in the periplasm and even in the culture supernatant. However, the anti-SlyA antibodies reacted with the SlyA protein in a periplasmic fraction that did not contain the haemolytic activity. Conversely, the periplasmic fraction exhibiting haemolytic activity did not contain the 17 kDa SlyA protein. Furthermore, S. typhimurium transformed with multiple copies of the slyA gene did not show a haemolytic phenotype when grown in rich culture media, although the SlyA protein was expressed in amounts similar to those in the recombinant E. coli strain. These results indicate that SlyA is not itself a cytolysin but rather induces in E. coli (but not in S. typhimurium) the synthesis of an uncharacterised, haemolytically active protein which forms pores with a diameter of about 2.6 nm in an artificial lipid bilayer. The SlyA protein thus seems to represent a regulation factor in Salmonella, as is also suggested by the similarity of the SlyA protein to some other bacterial regulatory proteins. slyA- and slyB-related genes were also obtained by PCR from E. coli, Shigella sp. and Citrobacter diversus but not from several other gram-negative bacteria tested.
Cytolysin A (ClyA) of Escherichia coli is a pore-forming hemolytic protein encoded by the clyA (hlyE, sheA) gene that was first identified in E. coli K-12. In this study we examined various clinical E. coli isolates with regard to the presence and integrity of clyA. PCR and DNA sequence analyses demonstrated that 19 of 23 tested Shiga toxin-producing E. coli (STEC) strains, all 7 tested enteroinvasive E. coli (EIEC) strains, 6 of 8 enteroaggregative E. coli (EAEC) strains, and 4 of 7 tested enterotoxigenic E. coli (ETEC) strains possess a complete clyA gene. The remaining STEC, EAEC, and ETEC strains and 9 of the 17 tested enteropathogenic E. coli (EPEC) strains were shown to harbor mutant clyA derivatives containing 1-bp frameshift mutations that cause premature termination of the coding sequence. The other eight EPEC strains and all tested uropathogenic and new-born meningitis-associated E. coli strains (n ؍ 14 and 3, respectively) carried only nonfunctional clyA fragments due to the deletion of two sequences of 493 bp and 204 or 217 bp at the clyA locus. Expression of clyA from clinical E. coli isolates proved to be positively controlled by the transcriptional regulator SlyA. Several tested E. coli strains harboring a functional clyA gene produced basal amounts of ClyA when grown under standard laboratory conditions, but most of them showed a clyA-dependent hemolytic phenotype only when SlyA was overexpressed. The presented data indicate that cytolysin A can play a role only for some of the pathogenic E. coli strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.