The presence of LiCl considerably facilitates the insertion of magnesium into various aromatic and heterocyclic bromides. Several functional groups, such as -OBoc, -OTs, -Cl, -F, -CF(3), -OMe, -NMe(2), and -N(2)NR(2), are well tolerated. The presence of a cyano group leads in some cases to competitive reduction of the organic halide to the corresponding ArH compound. The presence of sensitive groups such as methyl or ethyl ester is tolerated upon in situ trapping of the intermediate magnesium reagent with ZnCl(2). This method can also be applied to the preparation of functionalized benzylic zinc reagents from benzylic chlorides. In the case of di- or tribromoaryl derivatives, directing groups such as -OPiv, -OTs, -N(2)NR(2), or -OAc orient the zinc insertion (Zn/LiCl) to the ortho-position, while the reaction with Mg/LiCl or Mg/LiCl/ZnCl(2) leads to regioselective insertion into the para-carbon-bromine bond. Large-scale experiments (20-100 mmol) for all of the metalation procedures are described.
A newly developed microscale ReactIR flow cell was used as a convenient and versatile inline analytical tool for Grignard formation in continuous flow chemical processing. The LiCl-mediated halogen/Mg exchange reaction was used for the preparation of functionalized arylmagnesium compounds from aryl iodides or bromides. Furthermore, inline IR monitoring was used for the analysis of conversion and possible byproduct formation, as well as a potential tool for elucidation of mechanistic details. The results described herein indicate that the continuous flow systems are effective for highly exothermic reactions such as the Grignard exchange reaction due to fast mixing and efficient heat transfer.
In the presence of zinc dust (1.5-2.0 equiv) and LiCl (1.5-2.0 equiv), various benzylic chlorides bearing functional groups (iodide, cyanide, ester, ketone) are smoothly converted at 25 degrees C to the corresponding zinc reagents without homo-coupling (<5%). The utility of these benzylic zinc reagents is demonstrated by a short synthesis of papaverine.
Pump it up! The sluggish reactivity of organozinc reagents in additions to aldehydes, ketones, and CO2 can be increased by MgCl2, which is usually generated in the preparation of the zinc reagent. The direct reaction with CO2, in particular, opens an expeditious route to phenylacetic acid derivatives, as demonstrated in a short synthesis of ibuprofen (see scheme).
In situ generated aryl, heteroaryl, alkyl, or benzylic polyfunctional zinc reagents obtained by the addition of zinc and LiCl to the corresponding organic iodides undergo smooth Pd(0)-catalyzed cross-coupling reactions with aryl bromides, chlorides, and triflates in the presence of PEPPSI as a catalyst. This procedure avoids the manipulation of water and air-sensitive organozinc reagents and produces cross-coupling products in high yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.