We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001 through 2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (<70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while fossil fuel and fire emissions are prescribed. Weekly terrestrial sources and sinks are optimized (i.e., a flux inversion) for a set of 18 large ecosystems across Europe in which prescribed climate, weather, and surface characteristics introduce finer scale gradients. We find that the terrestrial biosphere in Europe absorbed a net average of 2212165 TgC yr22121 over the period considered. This uptake is predominantly in non-EU countries, and is found in the northern coniferous (221294 TgC/yr) and mixed forests (221230 TgC yr22121) as well as the forest/field complexes of eastern Europe (221285 TgC yr22121). An optimistic uncertainty estimate derived using three biosphere models suggests the uptake to be in a range of 2212122 to 2212258 TgC yr22121, while a more conservative estimate derived from the a-posteriori covariance estimates is 2212165±437 TgC yr22121. Note however that uncertainties are hard to estimate given the nature of the system and are likely to be significantly larger than this. Interannual variability in NEE includes a reduction in uptake due to the 2003 drought followed by three years of more than average uptake. The largest anomaly of NEE occurred in 2005 concurrent with increased seasonal cycles of observed CO2. We speculate these changes to result from the strong negative phase of the North Atlantic Oscillation in 2005 that lead to favorable summer growth conditions, and altered horizontal and vertical mixing in the atmosphere. All our results are available through http://www.carbontracker.e
Abstract. Aerosol optical depth andÅngström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001-September 2003. The average aerosol optical depth at 495.7 nm, τ , is 0.24±0.14; the averageÅngström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from −0.32 to 2.05, indicating a large variability in aerosol content and size. In cloudfree conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths andÅngström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α, that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in theÅngström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urbanindustrial/biomass burning aerosols.
This paper provides a detailed description of the atmospheric conditions characterizing the high Himalayas, thanks to continuous observations begun in March 2006 at the Nepal Climate Observatory-Pyramid (NCO-P) located at 5079 m a.s.l. on the southern foothills of Mt. Everest, in the framework of ABC-UNEP and SHARE-Ev-K2-CNR projects. The work presents a characterization of meteorological conditions and air-mass circulation at NCO-P during the first two years of activity. The mean values of atmospheric pressure, temperature and wind speed recorded at the site were: 551 hPa, −3.0 °C, 4.7 m s<sup>−1</sup>, respectively. The highest seasonal values of temperature (1.7 °C) and relative humidity (94%) were registered during the monsoon season, which was also characterized by thick clouds, present in about 80% of the afternoon hours, and by a frequency of cloud-free sky of less than 10%. The lowest temperature and relative humidity seasonal values were registered during winter, −6.3 °C and 22%, respectively, the season being characterised by mainly cloud-free sky conditions and rare thick clouds. The summer monsoon influenced rain precipitation (seasonal mean: 237 mm), while wind was dominated by flows from the bottom of the valley (S–SW) and upper mountain (N–NE). <br><br> The atmospheric composition at NCO-P has been studied thanks to measurements of black carbon (BC), aerosol scattering coefficient, PM<sub>1</sub>, coarse particles and ozone. The annual behaviour of the measured parameters shows the highest seasonal values during the pre-monsoon (BC: 316.9 ng m<sup>−3</sup>, PM<sub>1</sub>: 3.9 μg m<sup>−3</sup>, scattering coefficient: 11.9 Mm<sup>−1</sup>, coarse particles: 0.37 cm<sup>−3</sup> and O<sub>3</sub>: 60.9 ppbv), while the lowest concentrations occurred during the monsoon (BC: 49.6 ng m<sup>−3</sup>, PM<sub>1</sub>: 0.6 μg m<sup>−3</sup>, scattering coefficient: 2.2 Mm<sup>−1</sup>, and O<sub>3</sub>: 38.9 ppbv) and, for coarse particles, during the post-monsoon (0.07 cm<sup>−3</sup>. At NCO-P, the synoptic-scale circulation regimes present three principal contributions: Westerly, South-Westerly and Regional, as shown by the analysis of in-situ meteorological parameters and 5-day LAGRANTO back-trajectories. <br><br> The influence of the brown cloud (AOD>0.4) extending over Indo–Gangetic Plains up to the Himalayan foothills has been evaluated by analysing the in-situ concentrations of the ABC constituents. This analysis revealed that brown cloud hot spots mainly influence the South Himalayas during the pre-monsoon, in the presence of very high levels of atmospheric compounds (BC: 1974.1 ng m<sup>−3</sup>, PM<sub>1</sub>: 23.5 μg m<sup>−3</sup>, scattering coefficient: 57.7 Mm<sup>−1</sup>, coarse particles: 0.64 cm<sup>...
Abstract. Aerosol optical depth and Ångström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001–September 2003. The average aerosol optical depth at 495.7 nm, τ, is 0.24±0.14; the average Ångström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from −0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses are of African origin. In almost all cases African aerosols display high values of τ and low values of α, typical of Saharan dust (average values of τ and α are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of τ and α (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of τ (0.15), and relatively small values of α (0.92). Intermediate values of α are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. The largest values of α (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of α. The seasonal distribution of the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and Ångström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in the Ångström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols. Lampedusa reveals a stronger influence of desert dust compared to other Mediterranean sites (mostly located on the coasts of Europe).
Abstract. Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years [2004][2005][2006][2007][2008], are used to identify the influence of heavy fuel oil (HFO) combustion emissions on aerosol particles in the Central Mediterranean. Aerosol samples influenced by HFO are characterized by elevated Ni and V soluble fraction (about 80 % for aerosol from HFO combustion, versus about 40 % for crustal particles), high V and Ni to Si ratios, and values of V sol > 6 ng m −3 . Evidence of HFO combustion influence is found in 17 % of the daily samples. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel region, where an intense ship traffic occurs. This behavior suggests that single fixed sources like refineries are not the main responsible for the elevated V and Ni events, which are probably mainly due to ships emissions.V sol , Ni sol , and non-sea salt SO 2− 4 (nssSO 2− 4 ) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO 2− 4 , from the oxidation of SO 2 (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO 3 , pH1.5).Data suggest a characteristic nssSO 2− 4 /V ratio in the range 200-400 for HFO combustion aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the HFO contribution to total sulphates is estimated. HFO combustion emissions account, as a summer average, at least for 1.2 µg m −3 , representing about 30 % of the total nssSO 2− 4 , 3.9 % of PM 10 , 8 % of PM 2.5 , and 11 % of PM1. Within the used dataset, sulphate from HFO combustion emissions reached the peak value of 6.1 µg m −3 on 26 June 2008, when it contributed by 47 % to nssSO 2− 4 , and by 15 % to PM 10 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.