The significant accuracy demonstrated by our predictive model shows that NICeSim might be used for hypothesis testing to minimize in vivo experiments. We observed that the model delivers predictions that are in very good agreement with the literature, demonstrating that NICeSim might be an important tool for supporting decision making in medical practice. Other very important characteristics of NICeSim are its flexibility and dynamism. NICeSim is flexible because it allows the inclusion and deletion of variables according to the requirements of a particular study. It is also dynamic because it trains a just-in-time model. Therefore, the system is improved as data from new patients become available. Finally, NICeSim can be extended in a cooperative manner because it is an open-source system.
BackgroundMicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs). The current ab initio approaches, however, have selectivity issues, i.e., a high number of false positives is reported, which can lead to laborious and costly attempts to provide biological validation. This study presents an extension of the ab initio method miRNAFold, with the aim of improving selectivity through machine learning techniques, namely, random forest combined with the SMOTE procedure that copes with imbalance datasets.ResultsBy comparing our method, termed Mirnacle, with other important approaches in the literature, we demonstrate that Mirnacle substantially improves selectivity without compromising sensitivity. For the three datasets used in our experiments, our method achieved at least 97% of sensitivity and could deliver a two-fold, 20-fold, and 6-fold increase in selectivity, respectively, compared with the best results of current computational tools.ConclusionsThe extension of miRNAFold by the introduction of machine learning techniques, significantly increases selectivity in pre-miRNA ab initio prediction, which optimally contributes to advanced studies on miRNAs, as the need of biological validations is diminished. Hopefully, new research, such as studies of severe diseases caused by miRNA malfunction, will benefit from the proposed computational tool.
BackgroundThe shotgun strategy (liquid chromatography coupled with tandem mass spectrometry) is widely applied for identification of proteins in complex mixtures. This method gives rise to thousands of spectra in a single run, which are interpreted by computational tools. Such tools normally use a protein database from which peptide sequences are extracted for matching with experimentally derived mass spectral data. After the database search, the correctness of obtained peptide-spectrum matches (PSMs) needs to be evaluated also by algorithms, as a manual curation of these huge datasets would be impractical. The target-decoy database strategy is largely used to perform spectrum evaluation. Nonetheless, this method has been applied without considering sensitivity, i.e., only error estimation is taken into account. A recently proposed method termed MUDE treats the target-decoy analysis as an optimization problem, where sensitivity is maximized. This method demonstrates a significant increase in the retrieved number of PSMs for a fixed error rate. However, the MUDE model is constructed in such a way that linear decision boundaries are established to separate correct from incorrect PSMs. Besides, the described heuristic for solving the optimization problem has to be executed many times to achieve a significant augmentation in sensitivity.ResultsHere, we propose a new method, termed MUMAL, for PSM assessment that is based on machine learning techniques. Our method can establish nonlinear decision boundaries, leading to a higher chance to retrieve more true positives. Furthermore, we need few iterations to achieve high sensitivities, strikingly shortening the running time of the whole process. Experiments show that our method achieves a considerably higher number of PSMs compared with standard tools such as MUDE, PeptideProphet, and typical target-decoy approaches.ConclusionOur approach not only enhances the computational performance, and thus the turn around time of MS-based experiments in proteomics, but also improves the information content with benefits of a higher proteome coverage. This improvement, for instance, increases the chance to identify important drug targets or biomarkers for drug development or molecular diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.