Agarwood is a resinous wood produced by some members of plant family Thymelaeaceae under certain conditions. Agarwood is highly prized, but its formation requires a long-time process in nature. Therefore, various induction techniques have been explored to hasten the process. In this study, we induced agarwood in Gyrinops versteegii, one of the most abundant agarwood-producing trees in Indonesia. We used 12 trees and wounded four branches on each tree through an injection process. We used two strains of the endophytic fungi Fusarium solani isolated from Gorontalo and Jambi Provinces. After 3 months, the inoculated wood had an extensive resinous zone, when compared to wounded control wood. Gas chromatographic-mass spectrometric analysis of the inoculated samples revealed the presence of several sesquiterpenes characteristic of agarwood. These included alloaromadendrene, β-eudesmol and β-selinene as well as the chromone derivatives 2-(2-phenylethyl) chromen-4-one, 6-methoxy-2-(2-phenylethyl) chromen-4-one, and 6,7-dimethoxy-2-(2-phenylethyl) chromen-4-one. We conclude that this method successfully induced agarwood to form in a matter of months and could be used to enhance the success of agarwood cultivation.
Agarwood forms in the heartwood of trees in the family Thymelaeaceae in response to wounding, infection, or other stresses. Its formation is random and takes decades in natural populations, which are harvested for their aromatic compounds. This harvest has led to declining population, and many agarwood producing trees are considered endangered. Therefore, an alternative source would be desirable. We established an in vitro shoot culture method for one agarwood species,
Aquillaria malaccensis
. Agarwood production was elicited by introducing methyl jasmonate (MeJA) and crude extracts of
Fusarium solani
into the liquid culture medium. A high concentration of MeJA resulted in necrotic shoot tissue, while application of the crude extracts had no effect on growth of the shoots. Interestingly, gas chromatography-mass spectrometry (GC-MS) analysis of MeJA-treated shoots revealed the presence of several agarwood compounds, including sesquiterpenes and chromone derivative. In addition, GC-MS analysis of shoot-treated with the extracts revealed the presence of alkanes, aromatic compounds, and fatty acid derivatives. It may be that different elicitors induce the production of different compounds in
A. malaccensis
in vitro shoot cultures and could be used to manipulate the accumulation of different products in culture.
Agarwood is a resinous wood of great economic value produced by trees from the Thymelaeaceae family in response to stress. The natural formation of agarwood can take decades after exposure to the stressors. Artificial agarwood induction by inoculating the stem with fungi has been successfully demonstrated, but resin accumulation occurs very slowly. Cell suspension and callus cultures may serve as an alternative solution to provide a fast-growing plant material to produce artificial agarwood in a short period. Here, we induced agarwood formation in callus cultures of Aquilaria malaccensis by application of crude mycelial extracts of Fusarium solani strains GSL1 or GSL2, or methyl jasmonate (MeJA). After 20 days of treatment with elicitors, all treated calluses had less dry weight than the control group. The gas chromatography–mass spectrometry analysis identified 33 different secondary metabolites among all samples, four of which were present in all treatments and control, i.e., 1-docosene and 1-octadecene (alkenes), 4-di-tert-buthylphenol (phenolic), and benzenepropanoic acid (fatty acid). The 6-methoxy-2-(4-methoxyphenethyl)-4H-chromene-4-one, a chromone derivative, was only detected in callus elicited with the F. solani strain GSL2 and MeJA. All treated calli produced more fatty acid derivatives than the control group. We conclude that elicitors used in this study can induce the production of agarwood-related chemicals such as chromone and fatty acid in callus culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.