This paper addresses the problem of discovering the structure of a fitness function from binary strings to the reals under the assumption of bounded epistasis. Two loci (string positions) are epistatically linked if the effect of changing the allele (value) at one locus depends on the allele at the other locus. Similarly, a group of loci are epistatically linked if the effect of changing the allele at one locus depends on the alleles at all other loci of the group. Under the assumption that the size of such groups of loci are bounded, and assuming that the function is given only as a “black box function”, this paper presents and analyzes a randomized algorithm that finds the complete epistatic structure of the function in the form of the Walsh coefficients of the function.
It is supposed that the finite search space Ω has certain symmetries that can be described in terms of a group of permutations acting upon it. If crossover and mutation respect these symmetries, then these operators can be described in terms of a mixing matrix and a group of permutation matrices. Conditions under which certain subsets of Ω are invariant under crossover are investigated, leading to a generalization of the term schema. Finally, it is sometimes possible for the group acting on Ω to induce a group structure on Ω itself.
This paper is the first part of a two-part series. It proves a number of direct relationships between the Fourier transform and the simple genetic algorithm. (For a binary representation, the Walsh transform is the Fourier transform.) The results are of a theoretical nature and are based on the analysis of mutation and crossover. The Fourier transform of the mixing matrix is shown to be sparse. An explicit formula is given for the spectrum of the differential of the mixing transformation. By using the Fourier representation and the fast Fourier transform, one generation of the infinite population simple genetic algorithm can be computed in time O(cl log2 3), where c is arity of the alphabet and l is the string length. This is in contrast to the time of O(c3l) for the algorithm as represented in the standard basis. There are two orthogonal decompositions of population space that are invariant under mixing. The sequel to this paper will apply the basic theoretical results obtained here to inverse problems and asymptotic behavior.
A general form of stochastic search is described (random heuristic search), and some of its general properties are proved. This provides a framework in which the simple genetic algorithm (SGA) is a special case. The framework is used to illuminate relationships between seemingly different probabilistic perspectives of SGA behavior. Next, the SGA is formalized as an instance of random heuristic search. The formalization then used to show expected population fitness is a Lyapunov function in the infinite population model when mutation is zero and fitness is linear. In particular, the infinite population algorithm must converge, and average population fitness increases from one generation to the next. The consequence for a finite population SGA is that the expected population fitness increases from one generation to the next. Moreover, the only stable fixed point of the expected next population operator corresponds to the population consisting entirely of the optimal string. This result is then extended by way of a perturbation argument to allow nonzero mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.