The study of epileptic seizure often involves animal models to simulate the human behavior. Such models demand monitoring the evolution of the animal behavior continuously. Detecting seizure in this setup remains a challenge, because it typically requires trained personnel to annotate video sequences looking for the timestamps of seizure events. Deep Learning methods can help to solve this task in a more automatic and efficient manner due to their capacity of retrieving patterns from data. In this work, we conducted a pilot study to detect epileptic seizure from the images of small rodents using Convolutional Neural Networks (CNN) and the Continuous Wavelet Transform (CWT). We used the Social LEAP Estimates Animal Poses (SLEAP) framework for animal recognition to extract the morphological skeleton. Then, our CWT-CNN method used information of the frequency, magnitude and temporal evolution of head and thorax displacements to classify the animal behavior. The results showed a mean accuracy of 82.7%in the classification of epileptic seizure events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.