Biostimulants are substances able to improve water and nutrient use efficiency and counteract stress factors by enhancing primary and secondary metabolism. Premise of the work was to exploit raw extracts from leaves (LE) or flowers (FE) of Borago officinalis L., to enhance yield and quality of Lactuca sativa ‘Longifolia,’ and to set up a protocol to assess their effects. To this aim, an integrated study on agronomic, physiological and biochemical aspects, including also a phenomic approach, has been adopted. Extracts were diluted to 1 or 10 mL L–1, sprayed onto lettuce plants at the middle of the growing cycle and 1 day before harvest. Control plants were treated with water. Non-destructive analyses were conducted to assess the effect of extracts on biomass with an innovative imaging technique, and on leaf photosynthetic efficiency (chlorophyll a fluorescence and leaf gas exchanges). At harvest, the levels of ethylene, photosynthetic pigments, nitrate, and primary (sucrose and total sugars) and secondary (total phenols and flavonoids) metabolites, including the activity and levels of phenylalanine ammonia lyase (PAL) were assessed. Moreover, a preliminary study of the effects during postharvest was performed. Borage extracts enhanced the primary metabolism by increasing leaf pigments and photosynthetic activity. Plant fresh weight increased upon treatments with 10 mL L–1 doses, as correctly estimated by multi-view angles images. Chlorophyll a fluorescence data showed that FEs were able to increase the number of active reaction centers per cross section; a similar trend was observed for the performance index. Ethylene was three-fold lower in FEs treatments. Nitrate and sugar levels did not change in response to the different treatments. Total flavonoids and phenols, as well as the total protein levels, the in vitro PAL specific activity, and the levels of PAL-like polypeptides were increased by all borage extracts, with particular regard to FEs. FEs also proved efficient in preventing degradation and inducing an increase in photosynthetic pigments during storage. In conclusion, borage extracts, with particular regard to the flower ones, appear to indeed exert biostimulant effects on lettuce; future work will be required to further investigate on their efficacy in different conditions and/or species.
Remote-Sensing (RS) is the most widely used technique for crop monitoring in precision viticulture systems. This paper considers the possibility of substituting RS information obtained by various proximal sensing technologies employed directly in vineyards in order to enable a simultaneous evaluation of canopy health and vigour status. To this aim, a mobile lab has been developed. It consists of (a) two GreenSeeker RT100 sensors, a commercial optical device calculating NDVI, and Red/NIR indices in real time; (b) three pairs of ultrasonic sensors to estimate canopy thickness; and (c) a DGPS receiver to geo-reference data collected while travelling in a vineyard. During the 2007-2008 campaign, tests were carried out in a commercial vineyard in order to evaluate the monitoring system performance regarding disease appearance, diffusion, and vegetative development variations due to the normal growing process of vines. Surveys with the mobile lab were conducted in two groups of rows, treated and untreated with agrochemicals, and compared to manual morphological and physiological observations that characterised the phytosanitary status of the canopy. Measurement repeatability was verified; both NDVI values and ultrasonic data showed high repeatability (with r = 0.88 and r = 0.85, respectively). Optical data were processed in order to obtain NDVI maps, which clearly showed differences in canopy vigour evolution in the two examined groups, with low vegetative vigour in areas infected by Plasmopara viticola, as confirmed by manual assessment. Maps of the percentage infection index (I%I) were produced according to pathological manual survey results. The comparison between I%I and NDVI maps qualitatively confirmed the real vine phytosanitary status. Ultrasonically measured canopy thickness (UCT) was calculated and compared to manually measured canopy thickness (MCT) (r = 0.78). UCT and NDVI values were compared in order to identify areas affected by disease among zones presenting critical vegetation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.