Risk of hyperuricemia is modified by genetic and environmental factors. Our aim was to identify factors associated with serum uric acid levels and hyperuricemia in Mexicans. A pilot Genome-wide association study GWAS was performed in a subgroup of participants (n = 411) from the Health Workers Cohort Study (HWCS). Single nucleotide polymorphisms (SNPs) associated with serum uric acid levels were validated in all the HWCS participants (n = 1939) and replicated in independent children (n = 1080) and adult (n = 1073) case-control studies. The meta-analysis of the whole HWCS and replication samples identified three SLC2A9 SNPs: rs1014290 (p = 2.3 × 10−64), rs3775948 (p = 8.2 × 10−64) and rs11722228 (p = 1.1 × 10−17); and an ABCG2 missense SNP, rs2231142 (p = 1.0 × 10−18). Among the non-genetic factors identified, the visceral adiposity index, smoking, the metabolic syndrome and its components (waist circumference, blood pressure, glucose and hyperlipidemia) were associated with increased serum uric acid levels and hyperuricemia (p < 0.05). Among the female HWCS participants, the odds ratio for hyperuricemia was 1.24 (95% CI, 1.01–1.53) per unit increase in soft drink consumption. As reported in other studies, our findings indicate that diet, adiposity and genetic variation contribute to the elevated prevalence of hyperuricemia in Mexico.
Osteoporosis is a skeletal disease mainly affecting women over 50 years old and it represents a serious public health problem because of the high socioeconomic burden. This disease is characterized by deterioration of bone microarchitecture, low bone mineral density (BMD), and increased risk of fragility fractures. This study aimed to identify serum useful proteins as biomarkers for the diagnosis and/or prognosis of osteoporosis and fracture risk. We collected 446 serum samples from postmenopausal women aged ≥45 years old. Based on the BMD measurement, we classified the participants into three groups: osteoporotic, osteopenic, and normal. In an initial discovery stage, we conducted a proteomic approach using two-dimensional differential gel electrophoresis (2D-DIGE). The peptides into the spots of interest were identified through matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF/TOF). Enzyme-linked immunosorbent assay (ELISA) was performed to validate the proteins of interest. We identified 27 spots of interest when comparing low BMD versus normal BMD postmenopausal women. Based on their relevance in bone metabolism, we analyzed three proteins: ceruloplasmin (CP), gelsolin (GSN), and vitamin D-binding protein (VDBP). Our results demonstrated that low serum VDBP levels correlate with low BMD (osteopenic and osteoporotic). Therefore, VDBP could be considered as a novel, potential, and non-invasive biomarker for the early detection of osteoporosis.
Osteoporosis is the most frequent disorder of bone metabolism, owing to an alteration between osteoclast and osteoblast activity, which results from the interaction of genetic, environmental, and epigenetic factors. microRNAs, small non-coding RNAs of around 22 nucleotides with important regulatory roles in gene regulation, that target mRNAs for post-transcriptional destabilization have been suggested as biomarkers in several disorders. In this work, we used small RNA sequencing to identify microRNAs from peripheral blood monocytes that were differentially expressed between non-osteoporotic and osteoporotic Mexican postmenopausal women, to elucidate the potential role of microRNAs as non-invasive marker candidates in osteoporosis. We identified six candidate microRNAs: four were up-regulated (miR-708-5p, miR-34b-5p, miR-3161, miR-328-5p), while two were down-regulated (miR-4422 and miR-939-3p) in osteoporotic women. Differential expression was validated by quantitative RT-PCR and only the upregulation of miR-708-5p was found to be statistically significant. Bioinformatic analysis of target genes for miR-708-5p showed 15 signaling pathways related to bone metabolism. Since monocytes are osteoclast precursors, 10 potential target genes present in these pathways and related to osteoclastogenesis were identified ( AKT1, AKT2, CCND1, PARP1, SMAD3, CXCL5, FKBP5, MAP2K3, MMP2, and IKBKG). Five of them were found to be down-regulated according to microarray expression data. This is the first time that miR-708-5p has been identified in peripheral blood monocytes and associated with postmenopausal osteoporosis. Our results suggest that miR-708-5p reduces the expression of AKT1, AKT2, PARP1 FKBP5, and MP2K3 in peripheral blood monocytes contributing to an osteoporotic phenotype and could be a candidate marker for postmenopausal osteoporosis in Mexican population. Impact statement This is the first study in which hsa-miR-708-5p has been identified in peripheral blood monocytes (osteoclast precursors) and associated with postmenopausal osteoporosis through small RNA-Sequencing, in an Admixed Mexican Mestizo population. By conducting in silico and bioinformatic analyzes, we identified target genes and important signaling pathways involved in bone metabolism pointing hsa-miR-708-5p as a candidate marker for osteoporosis in Mexican population. These approaches provide a landscape of the post-transcriptional regulation, which can be useful for the management of postmenopausal osteoporosis along with the potential use of microRNAs as markers for its early detection.
Epigenetics affects gene expression and contributes to disease development by alterations known as epimutations. Hypermethylation that results in transcriptional silencing of tumor suppressor genes has been described in patients with hereditary cancers and without pathogenic variants in the coding region of cancer susceptibility genes. Although somatic promoter hypermethylation of these genes can occur in later stages of the carcinogenic process, constitutional methylation can be a crucial event during the first steps of tumorigenesis, accelerating tumor development. Primary epimutations originate independently of changes in the DNA sequence, while secondary epimutations are a consequence of a mutation in a cis or trans-acting factor. Secondary epimutations have a genetic basis in cis of the promoter regions of genes involved in familial cancers. This highlights epimutations as a novel carcinogenic mechanism whose contribution to human diseases is underestimated by the scarcity of the variants described. In this review, we provide an overview of secondary epimutations and present evidence of their impact on cancer. We propose the necessity for genetic screening of loci associated with secondary epimutations in familial cancer as part of prevention programs to improve molecular diagnosis, secondary prevention, and reduce the mortality of these diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.