Effluent found in the pulp and paper industry can cause considerable damage if it is discharged untreated, because of the high biochemical and chemical oxygen demands. Electrocoagulation is a physicochemical process widely used in industrial wastewater treatment. The removal of different pollutants depends on the sample type and operating conditions. The aim of this research was to evaluate the efficiency of an electrocoagulation system for COD removal from recycled paper production effluent via aluminum and iron electrodes. Different operational parameters, such as the electrolysis time (5 min to 15 min), current density (7 A/m2 to 11 A/m2), and distance between each electrode (5 mm to 20 mm), were evaluated. The turbidity, total suspended solids, chlorides, sulfates, and COD had removal efficiencies of 92.7%, 91.3%, 70.4%, 66.6%, and 64%, respectively. A polynomial model was generated to estimate the optimum conditions for COD removal. The optimum times for the current densities 7 A/m2, 8 A/m2, 9 A/m2, 10 A/m2, and 11 A/m2 were 39.5 min, 39.5 min, 35.7 min, 34.1 min, and 32.8 min, respectively, with a 15-mm electrode gap.
Effluent found in the pulp and paper industry can cause considerable damage if it is discharged untreated, because of the high biochemical and chemical oxygen demands. Electrocoagulation is a physicochemical process widely used in industrial wastewater treatment. The removal of different pollutants depends on the sample type and operating conditions. The aim of this research was to evaluate the efficiency of an electrocoagulation system for COD removal from recycled paper production effluent via aluminum and iron electrodes. Different operational parameters, such as the electrolysis time (5 min to 15 min), current density (7 A/m2 to 11 A/m2), and distance between each electrode (5 mm to 20 mm), were evaluated. The turbidity, total suspended solids, chlorides, sulfates, and COD had removal efficiencies of 92.7%, 91.3%, 70.4%, 66.6%, and 64%, respectively. A polynomial model was generated to estimate the optimum conditions for COD removal. The optimum times for the current densities 7 A/m2, 8 A/m2, 9 A/m2, 10 A/m2, and 11 A/m2 were 39.5 min, 39.5 min, 35.7 min, 34.1 min, and 32.8 min, respectively, with a 15-mm electrode gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.