Globoid cell leukodystrophy (GLD; also known as Krabbe disease) is an invariably fatal lysosomal storage disorder caused by mutations in the galactocerebrosidase (GALC) gene. Hematopoietic stem cell (HSC)-based gene therapy is being explored for GLD; however, we found that forced GALC expression was toxic to HSCs and early progenitors, highlighting the need for improved regulation of vector expression. We used a genetic reporter strategy based on lentiviral vectors to detect microRNA activity in hematopoietic cells at single-cell resolution. We report that miR-126 and miR-130a were expressed in HSCs and early progenitors from both mice and humans, but not in differentiated progeny. Moreover, repopulating HSCs could be purified solely on the basis of miRNA expression, providing a new method relevant for human HSC isolation. By incorporating miR-126 target sequences into a GALC-expressing vector, we suppressed GALC expression in HSCs while maintaining robust expression in mature hematopoietic cells. This approach protected HSCs from GALC toxicity and allowed successful treatment of a mouse GLD model, providing a rationale to explore HSC-based gene therapy for GLD.
Recent studies have shown a genetic association between glucocerebrosidase deficiencies and Parkinson's disease (PD). To further explore this issue the activity of beta-glucocerebrosidase and the activities of other lysosomal enzymes, alpha-mannosidase, beta-mannosidase, beta-hexosaminidase, and beta-galactosidase have been evaluated in the cerebrospinal fluid (CSF) of PD patients. The activities of alpha-mannosidase, beta-mannosidase, beta-glucocerebrosidase, and beta-hexosaminidase were substantially decreased in the CSF of PD patients, while levels of beta-galactosidase were essentially identical to controls. This study indicates that in PD several lysosomal hydrolases have decreased activities, further supporting a possible link between pathophysiological mechanisms underlying PD and lysosomal hydrolases.
Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.