a b s t r a c tNanocrystalline CeO 2 with a regular size of 9.5 nm was prepared by a freeze-drying method, and subsequent impregnated with a Cu(II) acetate solution, varying the loading of Cu (3, 6, 12 wt.%). The resulting CuO/CeO 2 materials were characterized by N 2 physisorption at −196 • C, HRTEM, H 2 -TPR, X-ray diffraction, Raman spectroscopy and XPS and tested as catalysts in the preferential CO oxidation in a H 2 -rich stream (CO-PROX) in the temperature range • C. In spite of their low specific surface areas the catalysts exhibited a good catalytic performance, resulting active and selective in the CO-PROX reaction at low temperatures. The inhibiting effect of the simultaneous presence of CO 2 (15 vol.%) and H 2 O (10 vol.%) in the reaction mixture on the performance of CuO-CeO 2 catalysts was also investigated. The addition of CO 2 and water in the gas stream depressed CO oxidation up to 160• C, its effect being negligible at higher temperatures. Nevertheless, despite these expected deactivation phenomena, a CO conversion value higher than 90% and a CO 2 selectivity of about 90% was achieved for all the samples at 160• C. The excellent performance, especially shown by the catalyst with 6 wt%. of copper, has been related to the wide dispersion of the copper active sites associated with the high amount of Ce 4+ species before reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.