The blends of pectin (PEC) and poly(vinyl alcohol) (PVA) at different components ratios were prepared by mixing in water. Thin polymeric films of PEC/ PVA blends and pure polymers were obtained by casting method. All samples were then artificially aged using Suntest apparatus (Atlas) up to 780 h. The changes in chemical structure during sample ageing have been monitored by infrared and ultraviolet-visible absorption spectroscopies. The first stage of weathering (up to $ 300 h) was very slow and alteration of chemical structure was negligible in all samples. Prolonged ageing (>300 h) caused more significant degradation processes. FTIR spectra exhibited the highest changes in hydroxyl and carbonyl band ranges indicating the efficient photooxidation of macromolecules. The mechanisms of the observed processes have been discussed. It was found that PVA undergoes faster photoxidative degradation than pectin aged at the same conditions. The PEC/PVA blends exhibited the improved resistance to weathering comparing with both polymers aged individually. Mutual stabilization effect can be explained by intermolecular interactions between PEC and PVA confirmed by spectroscopic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.