bThe genus Arcobacter is composed of 17 species which have been isolated from various sources. Of particular interest are A. butzleri, A. cryaerophilus, and A. skirrowii, as these have been associated with human cases of diarrhea, the probable transmission routes being through the ingestion of contaminated drinking water and food. To date, only limited studies of virulence traits in this genus have been undertaken. The present study used 60 Arcobacter strains isolated from different sources, representing 16 of the 17 species of the genus, to investigate their ability to adhere to and invade the human intestinal cell line Caco-2. In addition, the presence of five putative virulence genes (ciaB, cadF, cj1349, hecA, and irgA) was screened for in these strains by PCR. All Arcobacter species except A. bivalviorum and Arcobacter sp. strain W63 adhered to Caco-2 cells, and most species (10/16) were invasive. The most invasive species were A. skirrowii, A. cryaerophilus, A. butzleri, and A. defluvii. All invasive strains were positive for ciaB (encoding a putative invasion protein). Other putative virulence genes were present in other species, i.e., A. butzleri (cadF, cj1349, irgA, and hecA), A. trophiarum (cj1349), A. ellisii (cj1349), and A. defluvii (irgA). No virulence genes were detected in strains which showed little or no invasion of Caco-2 cells. These results indicate that many Arcobacter species are potential pathogens of humans and animals.
BackgroundThe most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10–15 %, and neurological sequelae in 30–50 % of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor.MethodsThirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays.ResultsThe E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines.ConclusionsRoutes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-015-1210-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.