The maternal leukocytes of the first-trimester decidua play a fundamental role in implantation and early development of the fetus and placenta, yet little is known regarding the second-trimester decidual environment. Our multicolor flow cytometric analyses of human decidual leukocytes detected an elevation in tissue resident neutrophils in the second trimester. These cells in both human and murine samples were spatially restricted to decidua basalis. In comparison with peripheral blood neutrophils (PMNs), the decidual neutrophils expressed high levels of neutrophil activation markers and the angiogenesis-related proteins: vascular endothelial growth factor-A, Arginase-1, and CCL2, similarly shown in tumor-associated neutrophils. Functional in vitro assays showed that second-trimester human decidua conditioned medium stimulated transendothelial PMN invasion, upregulated VEGFA, ARG1, CCL2, and ICAM1 mRNA levels, and increased PMN-driven in vitro angiogenesis in a CXCL8-dependent manner. This study identified a novel neutrophil population with a physiological, angiogenic role in human decidua.
Transformation of uterine spiral arteries is critical for healthy human pregnancy. We recently proposed a role for maternal leukocytes in decidual spiral artery remodeling and suggested that matrix metalloprotease (MMP) activity contributed to the destruction of the arterial wall. In the current study we used our first trimester placental-decidual co-culture (PDC) model to define the temporal relationship and test the mechanistic aspects of this process. PDC experiments were assessed by image analysis over a six-day time-course for degree of vascular transformation and leukocyte distribution around progressively remodeled arterioles. We observed rapid transformation in PDCs associated with loss of vascular smooth muscle cells, widening of the vessel lumen, and significant accumulation of uterine Natural Killer cells and macrophages within the vascular wall (P < 0.001) before trophoblast presence in the vessel lumens. These events did not occur in decidua-only cultures. Active MMP-9 was detected in leukocytes and vascular cells of remodeling arterioles , and inhibition of MMP-2/9 activity in PDC resulted in failure of decidual vascular remodeling compared with vehicle-treated PDCs. Apoptosis of vascular cells , macrophage-mediated phagocytosis, and vascular smooth muscle cell dedifferentiation contributed to the remodeling observed. The PDC model indicates that placental presence is required to initiate decidual spiral artery remodeling but that uterine Natural Killer cells and macrophages mediate the early stages of this process at the cellular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.