Premise The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. Methods Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. Results Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low‐elevation populations germinated in the fall without chilling, whereas high‐elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate‐change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high‐elevation populations. Conclusions The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.
1. The timing of life history events, such as germination and reproduction, influences ecological and selective environments throughout the life cycle. Many organisms evolve responses to seasonal environmental cues to synchronize these key events with favourable conditions. Often the fitness consequences of each life history transition depend on previous and subsequent events in the life cycle. If so, shifts in environmental cues can create cascading effects throughout the life cycle, which can influence fitness, selection on life history traits, and population viability.2. We examined variation in cue responses for contingent life history expression and fitness in a California native wildflower, Streptanthus tortuosus, by manipulating seasonal germination timing in a common garden experiment. We also manipulated chilling exposure to test the role of vernalization cues for seasonal life history contingency.3. Plants germinating early in the growing season in autumn were more likely to flower in the first year and less likely to perennate than later germinants in spring.First-year reproduction and overall fitness was the highest for autumn cohorts.Sensitivity analyses showed that optimal germination date depended on survival beyond the first year and fruit production in later years. 4. Experimental chilling exposure induced first-year flowering in spring germinants, demonstrating that seasonal life history contingency is mediated by a vernalization requirement. This requirement reduced fitness of spring germinants without increasing survival or later fecundity and may be maladaptive. Such mismatches between cues and fitness may become more pervasive as predicted climate change reduces exposure to chilling, shortens growing seasons, and increases severity of summer drought. 5. Synthesis. Shifts in germination timing in seasonal environments can cause cascading effects on trait expression and fitness that extend beyond the first year of the life cycle. Climate change is likely to shift seasonal conditions, influencing such life history contingency, with significant impacts on trait expression, fitness, and 240 | Journal of Ecology GREMER Et al. | 241Journal of Ecology GREMER Et al.
Ecologists and evolutionary biologists have long predicted that organisms in more climatically variable environments should be adapted to handle a wider range of conditions. This intuitive idea, known as the Climatic Variability Hypothesis, has gained mixed support from empirical studies. We tested the Climatic Variability Hypothesis in a novel system by comparing the thermal breadth of coastal and inland populations of Mimulus guttatus. To quantify thermal breadth, we performed a thermal performance experiment and built performance curves. Using these performance curves, we also evaluated evidence for a breadth–performance trade–off and the Hotter–is–Better hypothesis. We did not find support for the Climatic Variability Hypothesis; coastal and inland populations did not differ in thermal breadth. However, we found evidence for a breadth performance trade–off and the Hotter–is–Better hypothesis. Surprisingly, the two most inland populations differed the most in the thermal performance traits we evaluated. Our results highlight the importance of explicitly measuring thermal performance to test explanations of species distribution patterns and the need to examine alternative mechanisms by which organisms occupy different climatic regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.