Small Unmanned Aircraft Systems (UAS) have diverse commercial applications. Risk mitigation techniques must be developed to minimize the probability of harm to persons and property in the vicinity of the aircraft. This paper presents an emergency flight planner combining sensor-based and map-based elements to collectively plan a landing path for a UAS that experiences an unexpected low energy condition while flying over a populated area. Focus is placed in this work on the use of public databases of population distribution, structure locations, and terrain to create an efficient-to-access cost map of the data. Safe landing plans are generated with an A* search algorithm shown to be feasible for real-time use with the cost map. Simulation-based case studies are presented of a quadrotor UAS operating within New York City to illustrate how different cost terms impact optimal path characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.