BackgroundAlcohol and marijuana are the two most abused substances in US colleges. However, research on the combined influence (cross sectional or longitudinal) of these substances on academic performance is currently scant.MethodsData were derived from the longitudinal 2-year Brain and Alcohol Research in College Students (BARCS) study including 1142 freshman students who completed monthly marijuana use and alcohol consumption surveys. Subjects were classified into data-driven groups based on their alcohol and marijuana consumption. A linear mixed-model (LMM) was employed using this grouping factor to predict grade point average (GPA), adjusted for a variety of socio-demographic and clinical factors.ResultsThree data-driven clusters emerged: 1) No/low users of both, 2) medium-high alcohol/no-low marijuana, and 3) medium-high users of both substances. Individual cluster derivations between consecutive semesters remained stable. No significant interaction between clusters and semester (time) was noted. Post-hoc analysis suggest that at the outset, compared to sober peers, students using moderate to high levels of alcohol and low marijuana demonstrate lower GPAs, but this difference becomes non-significant over time. In contrast, students consuming both substances at moderate-to-high levels score significantly lower at both the outset and across the 2-year investigation period. Our follow-up analysis also indicate that when students curtailed their substance use over time they had significantly higher academic GPA compared to those who remained stable in their substance use patterns over the two year period.ConclusionsOverall, our study validates and extends the current literature by providing important implications of concurrent alcohol and marijuana use on academic achievement in college.
Background Heavy drinkers show altered functional magnetic resonance imaging (fMRI) response to alcohol cues. Little is known about alcohol cue reactivity among college age drinkers, who show the greatest rates of alcohol use disorders. Family history of alcoholism (FHP) is a risk factor for problematic drinking, but the impact on alcohol cue reactivity is unclear. We investigated the influence of heavy drinking and family history of alcoholism on alcohol cue-related fMRI response among college students. Method Participants were 19 family history negative (FHN) light drinkers, 11 FHP light drinkers, 25 FHN heavy drinkers, and 10 FHP heavy drinkers, ages 18–21. During fMRI scanning, participants viewed alcohol images, non-alcohol beverage images, and degraded control images, with each beverage image presented twice. We characterized blood oxygen level-dependent (BOLD) contrast for alcohol vs. non-alcohol images, and examined BOLD response to repeated alcohol images to understand exposure effects. Results Heavy drinkers exhibited greater BOLD response than light drinkers in posterior visual association regions, anterior cingulate, medial frontal cortex, hippocampus, amygdala, and dorsal striatum, and hyperactivation to repeated alcohol images in temporo-parietal, frontal, and insular regions (clusters > 8127 μl, p < .05). FHP individuals showed increased activation to repeated alcohol images in temporo-parietal regions, fusiform and hippocampus. There were no interactions between family history and drinking group. Conclusions Our results parallel findings of hyperactivation to alcohol cues among heavy drinkers in regions subserving visual attention, memory, motivation, and habit. Heavy drinkers demonstrated heightened activation to repeated alcohol images, which could influence continued drinking. Family history of alcoholism was associated with greater response to repeated alcohol images in regions underlying visual attention, recognition, and encoding, which could suggest aspects of alcohol cue reactivity that are independent of personal drinking. Heavy drinking and family history of alcoholism may have differential impacts on neural circuitry involved in cue reactivity.
Background and Aims Young adults show the highest rates of escalating drinking, yet the neural risk mechanisms remain unclear. Heavy drinkers show variant functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to alcohol cues, which may presage increasing drinking. In this longitudinal study, we ascertained whether BOLD response to alcohol pictures predicted subsequent heavy drinking among college students. Methods Participants were forty-three 18- to 21-year-olds in the United States who underwent BOLD scanning and completed monthly substance use surveys over the following year. Participants were categorized according to baseline and follow-up drinking into 13 continuously moderate drinkers, 16 continuously heavy drinkers, and 14 transitioners who drank moderately at baseline but heavily by follow-up. During fMRI scanning at baseline, participants viewed alcohol and matched non-alcohol beverage images. Results We observed group differences in alcohol cue-elicited BOLD response in bilateral caudate, orbitofrontal cortex, medial frontal cortex/anterior cingulate and left insula (clusters>2619ml, voxel-wise F(2,40)>3.23, p<.05, whole-brain corrected p<.05), where transitioners hyperactivated compared with moderate and heavy drinkers (all Tukey p<.05). Exploratory factor analysis revealed a single brain network differentiating those who subsequently increased drinking. Exploratory regressions showed that, compared with other risk factors (e.g., alcoholism family history, impulsivity), BOLD response best predicted escalating drinking amount and alcohol-related problems. Conclusions Neural response to pictures of alcohol is substantially enhanced among United States college students who subsequently escalate drinking. Greater cue-reactivity is associated with larger increases in drinking and alcohol-related problems, regardless of other baseline factors. Thus, neural cue-reactivity could uniquely facilitate identifying individuals at greatest risk for future problematic drinking.
Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alteration reported across substance used and MR modalities is in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.