C57Bl/6 mice were administered a high fat, Western diet (WD, 41% fat) or a very high fat lard diet (HFL, 60% fat), and evaluated for cognitive ability using the Stone T-maze and for biochemical markers of brain inflammation. WD consumption resulted in significantly increased body weight and astrocyte reactivity, but not impaired cognition, microglial reactivity, or heightened cytokine levels. HFL increased body weight, and impaired cognition, increased brain inflammation, and decreased BDNF. Collectively, these data suggest that while different diet formulations can increase body weight, the ability of high fat diets to disrupt cognition is linked to brain inflammation.
This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require TLR4 rather than CD36 or TLR2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, while JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent L-Leucine methyl ester (LME) revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid (DHA) acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome.
This study was undertaken to investigate the profile of NADPH oxidase (NOX) in the clinical progression of Alzheimer's disease (AD). Specifically, NOX activity and expression of the regulatory subunit p47phox and the catalytic subunit gp91phox was evaluated in affected (superior and middle temporal gyri) and unaffected (cerebellum) brain regions from a longitudinally followed group of patients. This group included both control and late-stage AD subjects, and also subjects with preclinical AD and with amnestic mild cognitive impairment (MCI) to evaluate the profile of NOX in the earliest stages of dementia. Data show significant elevations in NOX activity and expression in the temporal gyri of MCI patients as compared with controls, but not in preclinical or late-stage AD samples, and not in the cerebellum. Immunohistochemical evaluations of NOX expression indicate that whereas microglia express high levels of gp91phox, moderate levels of gp91phox also are expressed in neurons. Finally, in vitro experiments showed that NOX inhibition blunted the ability of oligomeric amyloid beta peptides to injure cultured neurons. Collectively, these data show that NOX expression and activity are upregulated specifically in a vulnerable brain region of MCI patients, and suggest that increases in NOX-associated redox pathways in neurons might participate in the early pathogenesis of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.