A series of 6-substituted classical pyrrolo [2,3-d]pyrimidine antifolates with a 3-to 6-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2, 3, 4 and 5, respectively) was synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the α-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the α-bromoketones, coupling with diethyl-L-glutamate and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRα or FRβ, and toward FRα-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo [2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogs as antitumor agents.
2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series.
A series of seven 2-amino-4-oxo-6-substituted thieno [2,3-d]pyrimidines, with bridge length variations (from 2-8 carbon atoms) were synthesized as selective folate receptor (FR) α and β substrates and as antitumor agents. The syntheses were accomplished from appropriate allylalcohols and 4-iodobenzoate to afford the aldehydes which were converted to the appropriate 2-amino-4-carbethoxy-5-substituted thiophenes 23-29. Cyclization with chlorformamidine afforded the thieno [2,3-d]pyrimidines 30-36 which were hydrolyzed and coupled with diethyl-L-glutamate, followed by saponification to give the target compounds 2-8. Compounds 3-6 were potent growth inhibitors (IC 50 4.7 to 334 nM) of human tumor cells (KB and IGROV1) that express FRs. In addition, compounds 3-6 inhibited the growth of Chinese hamster ovary (CHO) cells that expressed FRs but not the reduced folate carrier (RFC) or proton-coupled folate transporter (PCFT). However, the compounds were inactive toward CHO cells that lacked FRs but contained either the RFC or PCFT. By nucleoside and 5-amino-4-imidazole carboxamide (AICA) protection studies, along with in vitro and in situ enzyme activity assays, the mechanism of antitumor activity was identified as the dual inhibition of glycinamide ribonucleotide formyltransferase and, likely, AICA ribonucleotide formyltransferase. The dual inhibitory activity of the active thieno [2,3-d]pyrimidine antifolates and the FR specificity represent unique mechanistic features for these compounds distinct from all other known antifolates. The potent inhibitory effects of compounds 3-6 toward cells expressing FRs but not PCFT provide direct evidence that cellular uptake of this series of compounds by FRs does not depend on the presence of PCFT and argues that direct coupling between these transporters is not obligatory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.