A series of 6-substituted classical pyrrolo [2,3-d]pyrimidine antifolates with a 3-to 6-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2, 3, 4 and 5, respectively) was synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the α-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the α-bromoketones, coupling with diethyl-L-glutamate and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRα or FRβ, and toward FRα-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo [2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogs as antitumor agents.
This review attempts to provide a comprehensive overview of the biology of the physiologically and pharmacologically important transport system termed the "reduced folate carrier" (RFC). The ubiquitously expressed RFC has unequivocally established itself as the major transport system in mammalian cells and tissues for a group of compounds including folate cofactors and classical antifolate therapeutics. Loss of RFC expression or function may have potentially profound pathophysiologic consequences including cancer. For chemotherapeutic antifolates used for cancer such as methotrexate or pemetrexed, synthesis of mutant RFCs or loss of RFC transcripts and proteins results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and insufficient substrate for polyglutamate synthesis. Since RFC was first cloned in 1994, tremendous advances have been made in understanding the complex transcriptional and posttranscriptional regulation of RFC, in identifying structurally and functionally important domains and amino acids in the RFC molecule as a prelude to establishing the mechanism of transport, and in characterizing the molecular defects in RFC associated with loss of transport in antifolate resistant cell line models. Many of the insights gained from laboratory models of RFC portend opportunities for modulating carrier expression in drug resistant tumors, and for designing a new generation of agents with improved transport by RFC or substantially enhanced transport by other folate transporters over RFC. Many of the advances in the basic biology of RFC in cell line models are now being directly applied to human cancers in the clinical setting, most notably pediatric acute lymphoblastic leukemia and osteogenic sarcoma.
2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.