Time-domain optical brain imaging techniques introduce a number of different measurands for analyzing absorption changes located deep in the tissue, complicated by superficial absorption changes and noise. We implement a method that allows analysis, quantitative comparison and performance ranking of measurands under various conditions – including different values of reduced scattering coefficient, thickness of the superficial layer, and source-detector separation. Liquid phantom measurements and Monte Carlo simulations were carried out in two-layered geometry to acquire distributions of times of flight of photons and to calculate the total photon count, mean time of flight, variance, photon counts in time windows and ratios of photon counts in different time windows. Quantitative comparison of performance was based on objective metrics: relative contrast, contrast-to-noise ratio (CNR) and depth selectivity. Moreover, the product of CNR and depth selectivity was used to rank the overall performance and to determine the optimal source-detector separation for each measurand. Variance ranks the highest under all considered conditions.
We present and validate a multi-wavelength time-domain near-infrared spectroscopy (TD-NIRS) system that avoids switching wavelengths and instead exploits the full capability of a supercontinuum light source by emitting and acquiring signals for the whole chosen range of wavelengths. The system was designed for muscle and brain oxygenation monitoring in a clinical environment. A pulsed supercontinuum laser emits broadband light and each of two detection modules acquires the distributions of times of flight of photons (DTOFs) for 16 spectral channels (used width 12.5 nm / channel), providing a total of 32 DTOFs at up to 3 Hz. Two emitting fibers and two detection fiber bundles allow simultaneous measurements at two positions on the tissue or at two source-detector separations. Three established protocols (BIP, MEDPHOT, and nEUROPt) were used to quantitatively assess the system’s performance, including linearity, coupling, accuracy, and depth sensitivity. Measurements were performed on 32 homogeneous phantoms and two inhomogeneous phantoms (solid and liquid). Furthermore, measurements on two blood-lipid phantoms with a varied amount of blood and Intralipid provide the strongest validation for accurate tissue oximetry. The retrieved hemoglobin concentrations and oxygen saturation match well with the reference values that were obtained using a commercially available NIRS system (OxiplexTS) and a blood gas analyzer (ABL90 FLEX), except a discrepancy occurs for the lowest amount of Intralipid. In-vivo measurements on the forearm of three healthy volunteers during arterial (250 mmHg) and venous (60 mmHg) cuff occlusions provide an example of tissue monitoring during the expected hemodynamic changes that follow previously well-described physiologies. All results, including quantitative parameters, can be compared to other systems that report similar tests. Overall, the presented TD-NIRS system has an exemplary performance evaluated with state-of-the-art performance assessment methods.
. Significance : Multi-laboratory initiatives are essential in performance assessment and standardization—crucial for bringing biophotonics to mature clinical use—to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. Aim : The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. Approach : The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). Results : This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of over 1 h, and day-to-day reproducibility of . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. Conclusions : This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset—available soon in an open data repository—can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.
Visual stimulation is one of the most commonly used paradigms for cerebral cortex function investigation. Experiments typically involve presenting to a volunteer a black-and-white checkerboard with contrast-reversing at a frequency of 4 to 16 Hz. The aim of the present study was to investigate the influence of the flickering frequency on the amplitude of changes in the concentration of oxygenated and deoxygenated hemoglobin. The hemoglobin concentrations were assessed with the use of a high resolution diffuse optical tomography method. Spatial distributions of changes in hemoglobin concentrations overlaying the visual cortex are shown for various stimuli frequencies. Moreover, the hemoglobin concentration changes obtained for different source-detector separations (from 1.5 to 5.4 cm) are presented. Our results demonstrate that the flickering frequency had a statistically significant effect on the induced oxyhemoglobin changes (p < 0,001). The amplitude of oxy hemoglobin concentration changes at a frequency of 8 Hz was higher in comparison with that measured at 4 Hz :[median(25th-75thpercentiles) 1.24
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.