We present a methodology to design appointment systems for outpatient clinics and diagnostic facilities that offer both walk-in and scheduled service. The developed blueprint for the appointment schedule prescribes the number of appointments to plan per day and the moment on the day to schedule the appointments. The method consists of two models that are linked by an algorithm; one for the day process that governs scheduled and unscheduled arrivals on the day and one for the access process of scheduled arrivals. Appointment schedules that balance the waiting time at the facility for unscheduled patients and the access time for scheduled patients, are calculated iteratively using the outcomes of the two models. The method is of general nature and can therefore also be applied to scheduling problems in other sectors than health care.
This paper presents a methodology to plan treatments for rehabilitation outpatients. These patients require a series of treatments by therapists from various disciplines. In current practice, when treatments are planned, a lack of coordination between the different disciplines, along with a failure to plan the entire treatment plan at once, often occurs. This situation jeopardizes both the quality of care and the logistical performance.The multidisciplinary nature of the rehabilitation process complicates planning and control. An integral treatment planning methodology, based on an integer linear programming (ILP) formulation, ensures continuity of the rehabilitation process while simultaneously controlling seven performance indicators including access times, combination appointments, and therapist utilization. We apply our approach to the rehabilitation outpatient clinic of the Academic Medical Center (AMC) in Amsterdam, the Netherlands. Based on the results of this case, we are convinced that our approach can be valuable for decision-making support in resource capacity planning and control at many rehabilitation
a b s t r a c tWorkloads in nursing wards depend highly on patient arrivals and lengths of stay, both of which are inherently variable. Predicting these workloads and staffing nurses accordingly are essential for guaranteeing quality of care in a cost-effective manner. This paper introduces a stochastic method that uses hourly census predictions to derive efficient nurse staffing policies. The generic analytic approach minimizes staffing levels while satisfying so-called nurse-to-patient ratios. In particular, we explore the potential of flexible staffing policies that allow hospitals to dynamically respond to their fluctuating patient population by employing float nurses. The method is applied to a case study of the surgical inpatient clinic of the Academic Medical Center Amsterdam (AMC). This case study demonstrates the method's potential to evaluate the complex interaction between staffing requirements and several interrelated planning issues such as case mix, care unit partitioning and size, as well as surgical block planning. Inspired by the quantitative results, the AMC concluded that implementing this flexible nurse staffing methodology will be incorporated in the redesign of the inpatient care operations in the upcoming years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.