There is an increasing interest in the evaluation of prognostic and predictive biomarkers for personalizing cancer care. The literature on the trial designs for evaluation of these markers is diverse and there is no consensus in the classification or nomenclature. We set this study to review the literature systematically, to identify the proposed trial designs, and to develop a classification scheme. We searched MEDLINE, EMBASE, Cochrane Methodology Register, and MathSciNet up to January 2013 for articles describing these trial designs. In each eligible article, we identified the trial designs presented and extracted the term used for labeling the design, components of patient flow (marker status of eligible participants, intervention, and comparator), study questions, and analysis plan. Our search strategy resulted in 88 eligible articles, wherein 315 labels had been used by authors in presenting trial designs; 134 of these were unique. By analyzing patient flow components, we could classify the 134 unique design labels into four basic patient flow categories, which we labeled with the most frequently used term: single-arm, enrichment, randomize-all, and biomarker-strategy designs. A fifth category consists of combinations of the other four patient flow categories. Our review showed that a considerable number of labels has been proposed for trial designs evaluating prognostic and predictive biomarkers which, based on patient flow elements, can be classified into five basic categories. The classification system proposed here could help clinicians and researchers in designing and interpreting trials evaluating predictive biomarkers, and could reduce confusion in labeling and reporting.
<p>PDF file - 23K, Selected articles.</p>
<div>Abstract<p>There is an increasing interest in the evaluation of prognostic and predictive biomarkers for personalizing cancer care. The literature on the trial designs for evaluation of these markers is diverse and there is no consensus in the classification or nomenclature. We set this study to review the literature systematically, to identify the proposed trial designs, and to develop a classification scheme. We searched MEDLINE, EMBASE, Cochrane Methodology Register, and MathSciNet up to January 2013 for articles describing these trial designs. In each eligible article, we identified the trial designs presented and extracted the term used for labeling the design, components of patient flow (marker status of eligible participants, intervention, and comparator), study questions, and analysis plan. Our search strategy resulted in 88 eligible articles, wherein 315 labels had been used by authors in presenting trial designs; 134 of these were unique. By analyzing patient flow components, we could classify the 134 unique design labels into four basic patient flow categories, which we labeled with the most frequently used term: single-arm, enrichment, randomize-all, and biomarker-strategy designs. A fifth category consists of combinations of the other four patient flow categories. Our review showed that a considerable number of labels has been proposed for trial designs evaluating prognostic and predictive biomarkers which, based on patient flow elements, can be classified into five basic categories. The classification system proposed here could help clinicians and researchers in designing and interpreting trials evaluating predictive biomarkers, and could reduce confusion in labeling and reporting. <i>Clin Cancer Res; 19(17); 4578–88. ©2013 AACR</i>.</p></div>
<div>Abstract<p>There is an increasing interest in the evaluation of prognostic and predictive biomarkers for personalizing cancer care. The literature on the trial designs for evaluation of these markers is diverse and there is no consensus in the classification or nomenclature. We set this study to review the literature systematically, to identify the proposed trial designs, and to develop a classification scheme. We searched MEDLINE, EMBASE, Cochrane Methodology Register, and MathSciNet up to January 2013 for articles describing these trial designs. In each eligible article, we identified the trial designs presented and extracted the term used for labeling the design, components of patient flow (marker status of eligible participants, intervention, and comparator), study questions, and analysis plan. Our search strategy resulted in 88 eligible articles, wherein 315 labels had been used by authors in presenting trial designs; 134 of these were unique. By analyzing patient flow components, we could classify the 134 unique design labels into four basic patient flow categories, which we labeled with the most frequently used term: single-arm, enrichment, randomize-all, and biomarker-strategy designs. A fifth category consists of combinations of the other four patient flow categories. Our review showed that a considerable number of labels has been proposed for trial designs evaluating prognostic and predictive biomarkers which, based on patient flow elements, can be classified into five basic categories. The classification system proposed here could help clinicians and researchers in designing and interpreting trials evaluating predictive biomarkers, and could reduce confusion in labeling and reporting. <i>Clin Cancer Res; 19(17); 4578–88. ©2013 AACR</i>.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.