RNA polymerase III (Pol III) synthesises tRNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumour transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-EM structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from S. cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulphur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumour suppressor MAF1, which may explain why overexpressed RPC7α enhances tumour transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and might contribute to developing inhibitors that selectively target Pol III for therapeutic interventions.
We present the results of the first independent assessment of protein assemblies in CASP. A total of 1624 oligomeric models were submitted by 108 predictor groups for the 30 oligomeric targets in the CASP12 edition. We evaluated the accuracy of oligomeric predictions by comparison to their reference structures at the interface patch and residue contact levels. We find that interface patches are more reliably predicted than the specific residue contacts. Whereas none of the 15 hard oligomeric targets have successful predictions for the residue contacts at the interface, six have models with resemblance in the interface patch. Successful predictions of interface patch and contacts exist for all targets suitable for homology modeling, with at least one group improving over the best available template for each target. However, the participation in protein assembly prediction is low and uneven. Three human groups are closely ranked at the top by overall performance, but a server outperforms all other predictors for targets suitable for homology modeling. The state of the art of protein assembly prediction methods is in development and has apparent room for improvement, especially for assemblies without templates.
We present the assembly category assessment in the 13th edition of the CASP community‐wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form.
A correct assessment of the quaternary structure of proteins is a fundamental prerequisite to understanding their function, physico-chemical properties and mode of interaction with other proteins. Currently about 90% of structures in the Protein Data Bank are crystal structures, in which the correct quaternary structure is embedded in the crystal lattice among a number of crystal contacts. Computational methods are required to 1) classify all protein-protein contacts in crystal lattices as biologically relevant or crystal contacts and 2) provide an assessment of how the biologically relevant interfaces combine into a biological assembly. In our previous work we addressed the first problem with our EPPIC (Evolutionary Protein Protein Interface Classifier) method. Here, we present our solution to the second problem with a new method that combines the interface classification results with symmetry and topology considerations. The new algorithm enumerates all possible valid assemblies within the crystal using a graph representation of the lattice and predicts the most probable biological unit based on the pairwise interface scoring. Our method achieves 85% precision (ranging from 76% to 90% for different oligomeric types) on a new dataset of 1,481 biological assemblies with consensus of PDB annotations. Although almost the same precision is achieved by PISA, currently the most popular quaternary structure assignment method, we show that, due to the fundamentally different approach to the problem, the two methods are complementary and could be combined to improve biological assembly assignments. The software for the automatic assessment of protein assemblies (EPPIC version 3) has been made available through a web server at http://www.eppic-web.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.