We use mock interferometric H I measurements and a conventional tilted-ring modelling procedure to estimate circular velocity curves of dwarf galaxy discs from the APOS-TLE suite of ΛCDM cosmological hydrodynamical simulations. The modelling yields a large diversity of rotation curves for an individual galaxy at fixed inclination, depending on the line-of-sight orientation. The diversity is driven by non-circular motions in the gas; in particular, by strong bisymmetric fluctuations in the azimuthal velocities that the tilted-ring model is ill-suited to account for and that are difficult to detect in model residuals. Large misestimates of the circular velocity arise when the kinematic major axis coincides with the extrema of the fluctuation pattern, in some cases mimicking the presence of kiloparsec-scale density 'cores', when none are actually present. The thickness of APOSTLE discs compounds this effect: more slowly-rotating extra-planar gas systematically reduces the average line-of-sight speeds. The recovered rotation curves thus tend to underestimate the true circular velocity of APOSTLE galaxies in the inner regions. Non-circular motions provide an appealing explanation for the large apparent cores observed in galaxies such as DDO 47 and DDO 87, where the model residuals suggest that such motions might have affected estimates of the inner circular velocities. Although residuals from tilted ring models in the simulations appear larger than in observed galaxies, our results suggest that non-circular motions should be carefully taken into account when considering the evidence for dark matter cores in individual galaxies.
We explore the impact of cosmic reionization on nearby isolated dwarf galaxies using a compilation of star formation histories estimated from deep HST data and a cosmological hydrodynamical simulation of the Local Group. The nearby dwarfs show a wide diversity of star formation histories; from ancient systems that have largely completed their star formation ∼ 10 Gyr ago to young dwarfs that have formed the majority of their stars in the past ∼ 5 Gyr to two-component systems characterized by the overlap of comparable numbers of old and young stars. Taken as an ensemble, star formation in nearby dwarfs dips to lower-thanaverage rates at intermediate times (4 < t/Gyr < 8), a feature that we trace in the simulation to the effects of cosmic reionization. Reionization heats the gas and drives it out of the shallow potential wells of low mass halos, affecting especially those below a sharp mass threshold that corresponds to a virial temperature of ∼ 2 × 10 4 K at z reion . The loss of baryons leads to a sharp decline in the star forming activity of early-collapsing systems, which, compounded by feedback from early star formation, empties halos of gas and leaves behind systems where a single old stellar component prevails. In halos below the threshold at z reion , reionization heating leads to a delay in the onset of star formation that lasts until the halo grows massive enough to allow some of the remaining gas to cool and form stars. Young stellar components therefore dominate in dwarfs whose halos assemble late and thus form few stars before reionization. Two-component systems may be traced to late mergers of individual examples of the two aforementioned cases. The relative dearth of intermediate-age stars in nearby dwarfs might thus be the clearest signature yet identified of the imprint of cosmic reionization on the star formation history of dwarf galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.