Among commercial plastics, polyolefins are the most widely produced worldwide but have limited recyclability. Here, we report a chemical recycling route for the conversion of post-consumer high-density polyethylene (HDPE) into telechelic macromonomers suitable for circular reprocessing. Unsaturation was introduced into HDPE by catalytic dehydrogenation using an Ir-POCOP catalyst without an alkene acceptor. Cross-metathesis with 2-hydroxyethyl acrylate followed by hydrogenation transformed the partially unsaturated HDPE into telechelic macromonomers. The direct repolymerization of the macromonomers gave a brittle material due to the low overall weight-average molecular weight. Aminolysis of telechelic macromonomers with a small amount of diethanolamine increased the overall functionality. The resulting macromonomers were repolymerized through transesterification to generate a polymer with comparable mechanical properties to the starting post-consumer HDPE waste. Depolymerization of the repolymerized material catalyzed by an organic base regenerated the telechelic macromonomers, thereby allowing waste polyethylene materials to enter a chemical recycling pathway.
Obtaining three-dimensional (3D) configurational information of surface organometallic complexes is a persistent challenge due to the low spatial sensitivity of most spectroscopic methods. We show that employing 17O-enriched supports enables...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.