Silicone microreactors containing microchannels of 500 µm width in a single or triple stack configuration have been manufactured, coated with an Au/TiO2 photocatalyst and tested for the photocatalytic production of hydrogen from water-ethanol gaseous mixtures under UV irradiation. Computational fluid dynamics (CFD) simulations have revealed that the design of the distributing headers allowed for a homogeneous distribution of the gaseous stream within the channels of the microreactors. A rate equation for the photocatalytic reaction has been developed from the experimental results obtained with the single stack operated under different ethanol partial pressures, light irradiation intensities and contact times. The hydrogen photoproduction rate has been expressed in terms of a Langmuir-Hinshelwood-type equation that accurately describes the process considering that hydrogen is produced through the dehydrogenation of ethanol to acetaldehyde. This equation incorporates an apparent rate constant (kapp) that has been found to be proportional to the intrinsic kinetic rate constant (k), and that depends on the light intensity (I) as follows: kapp = k·I0.65. A three-dimensional isothermal CFD model has been developed in which the previously obtained kinetic equation has been implemented. The model adequately describes the production of hydrogen of both the single and triple stacks. Moreover, the specific hydrogen productions (i.e. per gram of catalyst) are very close for both stacks thus suggesting that the scaling-up of the process could be accomplished by simply numbering-up. However, small deviations between the experimental and predicted hydrogen production suggest that a fraction of the radiation is absorbed by the microreactor components which should be taken into account for scaling-up purposes.Postprint (author's final draft
A silicone microreactor with 500 mu m-width microchannels coated with a Au/TiO2 photocatalyst was manufactured and tested for the photocatalytic generation of hydrogen from gaseous water-ethanol mixtures under dynamic conditions. The manufacture of the microreactor included the fabrication of a polylactic acid (PLA) mold with a 3D printer and casting with polydimethylsiloxane (PDMS) prepolymer. After curing, the silicone microreactor was peeled off and the microchannels were coated with a Au/TiO2 photocatalyst prepared by impregnation of preformed Au nanoparticles over TiO2, and sealed with a thin silicone cover. The microreactor was tested at room temperature and atmospheric pressure under different operational conditions (photon irradiance, residence time, photocatalyst loading, and water ethanol ratio). Hydrogen production rates of 5.4 NmL W-1 h(-1) were measured at a residence time of 0.35 s using a H2O:C2H5OH molar ratio of 9:1, a photocatalyst load of 1.2 mg cm(-2) and a UV irradiance (365 nm) of 1.5 mW cm(-2) achieving an apparent quantum efficiency of 9.2%. The photogeneration of hydrogen with commercial bioethanol was also tested. A long-term photocatalytic test of two days revealed a stable hydrogen photoproduction rate. The use of silicone microreactors represents an attractive and customizable solution for conducting photochemical reactions for producing hydrogen at low cost. (C) 2016 Elsevier B.V. All rights reserved.Postprint (published version
The effect of temperature on the photocatalytic hydrogen generation from a gaseous water-ethanol mixture has been tested in a silicone microreactor containing nine microchannels of 500 μm (width) x 1 mm (depth) x 47 mm (length) coated with Au/TiO2 photocatalyst under UVA irradiation. Kinetic analyses have indicated that the hydrogen production rate follows the Langmuir-Hinshelwood model. The effect of temperature from 298 to 348 K has been determined by thermodynamic parameters, such as enthalpy (ΔH ≠), entropy (ΔS ≠) and Gibbs free energy (ΔG ≠) of activation, using the transition state theory (TST). The apparent rate constants (kapp) are higher by increasing the temperature, and the activation energy has been determined to be 24±1 kJ•mol-1. In order to evaluate if solar concentration could be used to enhance the photoproduction of hydrogen, the reaction has also been conducted under direct sunlight using a solar concentrator of about 1 m in diameter. Finally, the microreactor has been scaled up by a factor of ca. 10 to a device containing thirty two microchannels of 500 μm (width) x 1 mm (depth) x 117.5 mm (length). The specific (i.e per irradiated area of catalyst) hydrogen production rates of both microreactors using sunlight are very similar suggesting that this technology could lead to viable solar hydrogen production.
We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.Peer ReviewedPostprint (author's final draft
The application of inert and insulating low density polyethylene (LDPE) in electrochemical detection is null. However, in a recent study it was found that reactive species formed onto the surface of plasma-treated LDPE and other polymers promote the electrocatalytic oxidation of dopamine. In this work, we examine the role of plasma-treated LDPE as mediator in enzymatic glucose biosensors based on Glucose oxidase and glass carbon substrate. Results indicate that plasma-induced changes facilitate the electrocommunication between the enzyme and the substrate. The chronoamperometric response of these sensors prove their bifunctionality since the oxidation of glucose to gluconolactone, which is catalyzed by the GOx, coexists with the oxidation of dopamine that is electrocatalytized by the plasma activated LDPE surface. K E Y W O R D Scatalysis, glucose oxidase, inert polymers, poly(3,4-ethylenedioxythiophene), sensors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.