We present results of the MUSE-ALMA Halos, an ongoing study of the Circum-Galactic Medium (CGM) of low redshift galaxies (z ≤ 1.4), currently comprising 14 strong H i absorbers in five quasar fields. We detect 43 galaxies associated with absorbers down to star formation rate (SFR) limits of 0.01-0.1 M yr −1 , found within impact parameters (b) of 250 kpc from the quasar sightline. Excluding the targeted absorbers, we report a high detection rate of 89 per cent and find that most absorption systems are associated with pairs or groups of galaxies (three to eleven members). We note that galaxies with the smallest impact parameters are not necessarily the closest to the absorbing gas in velocity space. Using a multi-wavelength dataset (UVES/HIRES, HST, MUSE), we combine metal and H i column densities, allowing for derivation of the lower limits of neutral gas metallicity as well as emission line diagnostics (SFR, metallicities) of the ionised gas in the galaxies. We find that groups of associated galaxies follow the canonical relations of N(H i)b and W r (2796)b, defining a region in parameter space below which no absorbers are detected. The metallicity of the ISM of associated galaxies, when measured, is higher than the metallicity limits of the absorber. In summary, our findings suggest that the physical properties of the CGM of complex group environments would benefit from associating the kinematics of individual absorbing components with each galaxy member.
Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky. Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift. Methods. To identifyy the counterparts, we combined the results from two independent methods (NWAY and ASTROMATCH), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts. Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main sample and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available. Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts.
We present results of MUSE-ALMA Halos, an ongoing study of the Circumgalactic Medium (CGM) of galaxies (z ≤ 1.4). Using multi-phase observations we probe the neutral, ionised and molecular gas in a sub-sample containing six absorbers and nine associated galaxies in the redshift range z ∼ 0.3 − 0.75. Here, we give an in-depth analysis of the newly CO-detected galaxy Q2131-G1 (z = 0.42974), while providing stringent mass and depletion time limits for the non-detected galaxies. Q2131-G1 is associated with an absorber with column densities of log(NHI/cm−2) ∼ 19.5 and $\textrm {log}(N_{\textrm {H}_2}/\textrm {cm}^{-2}) \sim 16.5$, has a star formation rate of SFR = 2.00 ± 0.20 M⊙yr−1, a dark matter fraction of fDM(r1/2) = 0.24 − 0.54 and a molecular gas mass of $M_\textrm {mol} = 3.52 ^{+3.95}_{-0.31} \times 10^9 \,\, \textrm {M}_{\odot }$ resulting in a depletion time of τdep < 4.15 Gyr. Kinematic modelling of both the CO (3–2) and [OIII] λ5008 emission lines of Q2131-G1 shows that the molecular and ionised gas phases are well aligned directionally and that the maximum rotation velocities closely match. These two gas phases within the disk are strongly coupled. The metallicity, kinematics and orientation of the atomic and molecular gas traced by a two-component absorption feature is consistent with being part of the extended rotating disk with a well-separated additional component associated with infalling gas. Compared to emission-selected samples, we find that HI-selected galaxies have high molecular gas masses given their low star formation rate. We consequently derive high depletion times for these objects.
Observations of the cosmic evolution of different gas phases across time indicate a marked increase in the molecular gas mass density towards z ∼ 2 − 3. Such a transformation implies an accompanied change in the global distribution of molecular hydrogen column densities ($N_{\rm {H_2}}$). Using observations by PHANGS-ALMA/SDSS and simulations by GRIFFIN/IllustrisTNG we explore the evolution of this H2 column density distribution function [$f(N_{\rm {H}_2})$]. The H2 (and HI) column density maps for TNG50 and TNG100 are derived in post-processing and are made available through the IllustrisTNG online API. The shape and normalization of $f(N_{\rm {H}_2})$ of individual main-sequence star-forming galaxies are correlated with the star formation rate (SFR), stellar mass (M*), and H2 mass ($M_{\rm {H}_2}$) in both observations and simulations. TNG100, combined with H2 post-processing models, broadly reproduces observations, albeit with differences in slope and normalization. Also, an analytically modelled f(N), based on exponential gas disks, matches well with the simulations. The GRIFFIN simulation gives first indications that the slope of $f(N_{\rm {H}_2})$ might not majorly differ when including non-equilibrium chemistry in simulations. The $f(N_{\rm {H}_2})$ by TNG100 implies that higher molecular gas column densities are reached at z = 3 than at z = 0. Further, denser regions contribute more to the molecular mass density at z = 3. Finally, H2 starts dominating compared to HI only at column densities above log($N_{\rm {H}_2} / \rm {cm}^{-2}) \sim 21.8-22$ at both redshifts. These results imply that neutral atomic gas is an important contributor to the overall cold gas mass found in the ISM of galaxies including at densities typical for molecular clouds at z = 0 and z = 3.
We study the optical linear and circular polarization in the optically thin regime of the core and jet of M87. Observations were acquired two days before the Event Horizon Telescope (EHT) campaign in early 2017 April. A high degree (∼20 per cent) of linear polarization (Plin) is detected in the bright jet knots resolved at $\sim 10\,\mathrm{ to}\,23\, \rm {arcsec}$ ($0.8{-}1.8\, \rm {kpc}$) from the centre, whereas the nucleus and inner jet show Plin ≲ 5 per cent. The position angle of the linear polarization shifts by ∼90° from each knot to the adjacent ones, with the core angle perpendicular to the first knot. The nucleus was in a low level of activity (Plin ∼ 2–3 per cent), and no emission was detected from HST-1. No circular polarization was detected either in the nucleus or the jet above a 3 σ level of Pcirc ≤ 1.5 per cent, discarding the conversion of Plin into Pcirc. A disordered magnetic field configuration or a mix of unresolved knots polarized along axes with different orientations could explain the low Plin. The latter implies a smaller size of the core knots, in line with current interferometric observations. Polarimetry with EHT can probe this scenario in the future. A steep increase of both Plin and Pcirc with increasing frequency is expected for the optically thin domain, above the turnover point. This work describes the methodology to recover the four Stokes parameters using a λ/4 waveplate polarimeter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.