In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.
Viruses are obligate intracellular pathogens that require the protein synthesis machinery of the host cells to replicate. These microorganisms have evolved mechanisms to avoid detection from the host immune innate and adaptive response, which are known as viral evasion mechanisms. Viruses enter the host through skin and mucosal surfaces that happen to be colonized by communities of thousands of microorganisms collectively known as the commensal microbiota, where bacteria have a role in the modulation of the immune system and maintaining homeostasis. These bacteria are necessary for the development of the immune system and to prevent the adhesion and colonization of bacterial pathogens and parasites. However, the interactions between the commensal microbiota and viruses are not clear. The microbiota could confer protection against viral infection by priming the immune response to avoid infection, with some bacterial species being required to increase the antiviral response. On the other hand, it could also help to promote viral evasion of certain viruses by direct and indirect mechanisms, with the presence of the microbiota increasing infection and viruses using LPS and surface polysaccharides from bacteria to trigger immunosuppressive pathways. In this work, we reviewed the interaction between the microbiota and viruses to prevent their entry into host cells or to help them to evade the host antiviral immunity. This review is focused on the influence of the commensal microbiota in the viruses' success or failure of the host cells infection.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Leprosy is a chronic disease caused by Mycobacterium leprae that affects the skin and peripheral nerves. It may present as one of two distinct poles: the self-limiting tuberculoid leprosy and the highly infectious lepromatous leprosy (LL) characterized by M. leprae-specific absence of cellular immune response. The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) enhance the bactericide activities of macrophages after interaction with its receptor, CD74. Importantly, MIF also possesses chemoattractant properties, and it is a key factor in situ for the activation of macrophages and in blood to promote leukocytes migration. MIF-mediated activation of macrophages is a key process for the elimination of pathogens such as Mycobacterium tuberculosis; however, its participation for the clearance of M. leprae is unclear. The aim of this study was to evaluate the serum levels of MIF as well as MIF and CD74 expression in skin lesions of LL and compare it with healthy skin (HSk) taken from subjects attending to dermatological consult. Samples of serum and skin biopsies were taken from 39 LL patients and compared with 36 serum samples of healthy subjects (HS) and 10 biopsies of HSk. Serum samples were analyzed by ELISA and skin biopsies by immunohistochemistry (IHC). IHC smears were observed in 12 100× microscopic fields, in which percentage of stained cells and staining intensity were evaluated. Both variables were used to calculate a semi-quantitative expression score that ranged from 0 to 3+. We found no differences in MIF levels between LL patients and HS in sera. In addition, MIF was observed in over 75% of cells with high intensity in the skin of patients and HSk. Although we found no differences in MIF expression between the groups, a CD74 score statistically higher was found in LL skin than HSk (p < 0.001); this was the result of a higher percentage of cells positive for CD74 (p < 0.001). As a conclusion, we found that CD74-positive cells are intensely recruited to the skin with LL lesions. In this manner, MIF signaling may be enhanced in the skin of LL patients due to increased expression of its receptor, but further studies are required.
The term periodontal disease encompasses a wide variety of chronic inflammatory conditions of the periodontium, including gingivitis and periodontitis. The gingival disease is an infectious process, which occurs due to the progression of untreated gingivitis. It is characterized by a destructive inflammatory process that affects the supporting tissues of the teeth, which causes the loss of the dental organs. As a result of inflammation, a wide range of cytokines and inflammatory mediators together contribute to tissue degradation and bone resorption. However, some molecules that have not been studied in the inflammatory process of this disease, such as the macrophage migration inhibitory factor (MIF) which is considered an important cytokine of the innate immune system; it is expressed constitutively in immune and nonimmune cells, and it is released immediately against bacterial stimuli, hypoxia, and proliferative signals. MIF has been described in some chronic degenerative, inflammatory, and autoimmune diseases. Previous studies have described that in murine models of periodontitis, MIF promotes the activation and differentiation of osteoclasts that could position this cytokine in the immunopathogenesis of gingival disease in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.