NKG2D ligands (NKG2DL) are expressed on various tumor types and immunosuppressive cells within tumor microenvironments, providing suitable targets for cancer therapy. Various immune cells express NKG2D receptors, including natural killer (NK) cells and CD8 T cells. Interactions between NKG2DL and NKG2D receptors are essential for NK-cell elimination of osteosarcoma tumor-initiating cells. In this report, we used NKG2D-NKG2DL interactions to optimize an immunotherapeutic strategy against osteosarcoma. We evaluated and the safety and cytotoxic capacity against osteosarcoma cells of CD45RA memory T cells expressing an NKG2D-4-1BB-CD3z chimeric antigen receptor (CAR). CD45RA cells from healthy donors were transduced with NKG2D CARs containing 4-1BB and CD3z signaling domains. NKG2D CAR expression was analyzed by flow cytometry. cytotoxicity of NKG2D-CAR CD45RA T cells against osteosarcoma was evaluated by performing conventional 4-hour europium-TDA release assays. For the orthotopic model, 531MII YFP-luc osteosarcoma cells were used as targets in NOD-scid IL2Rg mice. Lentiviral transduction of NKG2D-4-1BB-CD3z markedly increased NKG2D surface expression in CD45RA cells. Genetic stability was preserved in transduced cells. , NKG2D-CAR memory T cells showed significantly increased cytolytic activity than untransduced cells against osteosarcoma cell lines, while preserving the integrity of healthy cells. NKG2D-CAR memory T cells had considerable antitumor activity in a mouse model of osteosarcoma, whereas untransduced T cells were ineffective. Our results demonstrate NKG2D-4-1BB-CD3z CAR-redirected memory T cells target NKG2DL-expressing osteosarcoma cells and and could be a promising immunotherapeutic approach for patients with osteosarcoma. .
Visfatin, also known as extracellular pre–B-cell colony–enhancing factor (PBEF) and nicotinamide phosphoribosyltransferase (Nampt), is an adipocytokine whose circulating levels are enhanced in metabolic disorders, such as type 2 diabetes mellitus and obesity. Circulating visfatin levels have been positively associated with vascular damage and endothelial dysfunction. Here, we investigated the ability of visfatin to directly impair vascular reactivity in mesenteric microvessels from both male Sprague-Dawley rats and patients undergoing non-urgent, non-septic abdominal surgery. The pre-incubation of rat microvessels with visfatin (50 and 100 ng/mL) did not modify the contractile response to noradrenaline (1 pmol/L to 30 µmol/L), as determined using a small vessel myograph. However, visfatin (10 to 100 ng/mL) concentration-dependently impaired the relaxation to acetylcholine (ACh; 100 pmol/L to 3 µmol/L), without interfering with the endothelium-independent relaxation to sodium nitroprusside (1 nmol/L to 3 µmol/L). In both cultured human umbilical vein endothelial cells and rat microvascular preparations, visfatin (50 ng/mL) stimulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as determined by lucigenin-derived chemiluminiscence. The relaxation to ACh impaired by visfatin was restored by the NADPH oxidase inhibitor apocynin (10 µmol/L). Additionally, the Nampt inhibitor APO866 (10 mmol/L to 10 µmol/L), but not an insulin receptor-blocking antibody, also prevented the stimulation of NADPH oxidase and the relaxation impairment elicited by visfatin. Accordingly, the product of Nampt activity nicotinamide mononucleotide (100 nmol/L to 1 mmol/L) stimulated endothelial NADPH oxidase activity and concentration-dependently impaired ACh-induced vasorelaxation. In human mesenteric microvessels pre-contracted with 35 mmol/L potassium chloride, the endothelium-dependent vasodilation to bradykinin (1 nmol/L to 3 µmol/L) was equally impaired by visfatin and restored upon co-incubation with APO866. In conclusion, visfatin impairs endothelium-dependent relaxation through a mechanism involving NADPH oxidase stimulation and relying on Nampt enzymatic activity, and therefore arises as a potential new player in the development of endothelial dysfunction.
This proof-of-concept single-arm open-label phase I clinical trial (NCT02481934) studied the safety and efficacy of multiple infusions of activated and expanded natural killer (NKAE) cells in combination with anti-myeloma drugs in multiple myeloma patients. It included five patients with relapsed or refractory MM who had received two to seven prior lines of therapy; NK cells were expanded for 3 weeks with K562-mb15-41BBL cells. Patients received four cycles of pharmacological treatment with two infusions of 7.5 × 106 NKAEs/kg per cycle. NKAE generation, expansion, and NK monitoring was assessed using flow cytometry. Eighteen clinical-grade NKAE cell GMP-grade products were generated to obtain 627 × 106 NKAEs (range: 315–919 × 106) for the first infusion and 943 × 106 (range: 471–1481 × 106) for the second infusion with 90% (±7%) purity. Neutropenia grade II occurred in two patients and was related to chemotherapy. Of the five patients, four showed disease stabilization before the end of NKAE treatment, and two showed a 50% reduction in bone marrow infiltration and a long-term (>1 y) response. The NKAE cells had a highly cytotoxic phenotype and high cytotoxicity in vitro. Infused NKAE cells were detected in bone marrow and peripheral blood after infusions. Ex vivo expansion of autologous NK cells is feasible, NKAE cells are clinically active and the multiple infusions are well tolerated in patients with relapsed or refractory myeloma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.