Although molecular tools for controlling neuronal activity by light have vastly expanded, there are still unmet needs which require development and refinement. For example, light delivery into the brain is still a major practical challenge that hinders potential translation of optogenetics in human patients. In addition, it would be advantageous to manipulate neuronal activity acutely and precisely as well as chronically and non‐invasively, using the same genetic construct in animal models. We have previously addressed these challenges by employing bioluminescence and have created a new line of opto‐chemogenetic probes termed luminopsins by fusing light‐sensing opsins with light‐emitting luciferases. In this report, we incorporated Chlamydomonas channelrhodopsin 2 with step‐function mutations as the opsin moiety in the new luminopsin fusion protein termed step‐function luminopsin (SFLMO). Bioluminescence‐induced photocurrent lasted longer than the bioluminescence signal due to very slow deactivation of the mutated channel. In addition, bioluminescence was able to activate most of the channels on the cell surface due to the extremely high light sensitivity of the channel. This efficient channel activation was partly mediated by radiationless bioluminescence resonance energy transfer due to the proximity of luciferase and opsin. To test the utility of SFLMOs in vivo, we transduced the substantia nigra unilaterally via a viral vector in male rats. Injection of the luciferase substrate as well as conventional photostimulation via fiber optics elicited circling behaviors. Thus, SFLMOs expand the current approaches for manipulation of neuronal activity in the brain and add more versatility and practicality to optogenetics in freely behaving animals.
Objective. Developing a new neuromodulation method for epilepsy treatment requires a large amount of time and resources to find effective stimulation parameters and often fails due to inter-subject variability in stimulation effect. As an alternative, we present a novel data-driven surrogate approach which can optimize the neuromodulation efficiently by investigating the stimulation effect on surrogate neural states. Approach. Medial septum (MS) optogenetic stimulation was applied for modulating electrophysiological activities of the hippocampus in a rat temporal lobe epilepsy model. For the new approach, we implemented machine learning techniques to describe the pathological neural states and to optimize the stimulation parameters. Specifically, first, we found neural state surrogates to estimate a seizure susceptibility based on hippocampal local field potentials. Second, we modulated the neural state surrogates in a desired way with the subject-specific optimal stimulation parameters found by in vivo Bayesian optimization. Finally, we tested whether modulating the neural state surrogates affected seizure frequency. Main results. We found two neural state surrogates: The first was hippocampal theta power by considering its well-known relationship with epilepsy, and the second was the output of pre-ictal state model (PriSM) which was built by characterizing the hippocampal activity during the pre-ictal period. The optimal stimulation parameters found by Bayesian optimization outperformed the other parameters in terms of modulating the surrogates toward anti-seizure neural state. When treatment efficacy was tested, the subject-specific optimal parameters for increasing theta power were more effective to suppress seizures than fixed stimulation parameter (7 Hz). However, modulation of the other neural state surrogate, PriSM, did not suppress seizures. Significance. The surrogate approach can save enormous time and resources to find subject-specific optimal stimulation parameters which can effectively modulate neural states and further improve therapeutic effectiveness. This approach can also be used for improving neuromodulation treatment of other neurological or psychiatric diseases.
Objective. Neural modulation is a fundamental tool for understanding and treating neurological and psychiatric diseases. However, due to the high-dimensional space, subject-specific responses, and variability within each subject, it is a major challenge to select the stimulation parameters that have the desired effect. Data-driven optimization provides a range of different algorithms and tools for addressing this challenge, but each of these algorithms has specific strengths and limitations, and therefore must be carefully designed for a given neural modulation problem. Here we present a framework for designing data-driven optimization algorithms for neural modulation. Approach. We develop this framework using an optogenetic medial septum stimulation model, where the goal is to find the stimulation parameters that modulate hippocampal gamma power to a desired value. This framework proceeds in four steps: (a) collecting stimulation data, (b) creating high-throughput simulation models, (c) prototyping a range of different data-driven optimization algorithms and evaluating their performance, and (d) deploying the best performing algorithm in vivo. Main results. Following this framework, we prototype and design an algorithm specifically for finding the medial septum optogenetic stimulation parameters that maximize hippocampal gamma power. Building on this, we then change our objective function to find the stimulation parameters that modulate gamma to a specific setpoint, use the framework to understand and anticipate the results before deploying in vivo. Significance. We show that this framework can be used to design an effective optimization solution for a specific neural modulation problem, and discuss how it can potentially be applied beyond the optogenetic medial septum stimulation model.
Electrical brain stimulation has become an essential treatment option for more than one third of epilepsy patients who are resistant to pharmacological therapy and are not candidates for surgical resection. However, currently approved stimulation paradigms achieve only moderate success, on average providing approximately 75% reduction in seizure frequency and extended periods of seizure freedom in nearly 20% of patients. Outcomes from electrical stimulation may be improved through the identification of novel anatomical targets, particularly those with significant anatomical and functional connectivity to the epileptogenic zone. Multiple studies have investigated the medial septal nucleus (i.e., medial septum) as such a target for the treatment of mesial temporal lobe epilepsy. The medial septum is a small midline nucleus that provides a critical functional role in modulating the hippocampal theta rhythm, a 4–7‐Hz electrophysiological oscillation mechanistically associated with memory and higher order cognition in both rodents and humans. Elevated theta oscillations are thought to represent a seizure‐resistant network activity state, suggesting that electrical neuromodulation of the medial septum and restoration of theta‐rhythmic physiology may not only reduce seizure frequency, but also restore cognitive comorbidities associated with mesial temporal lobe epilepsy. Here, we review the anatomical and physiological function of the septohippocampal network, evidence for seizure‐resistant effects of the theta rhythm, and the results of stimulation experiments across both rodent and human studies, to argue that deep brain stimulation of the medial septum holds potential to provide an effective neuromodulation treatment for mesial temporal lobe epilepsy. We conclude by discussing the considerations necessary for further evaluating this treatment paradigm with a clinical trial.
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.