Highlights d Activation of MnPO GABAergic neurons increased NREM sleep d Activation of VLPO glutamatergic neurons caused a robust increase in wakefulness d Activating these same preoptic neurons did not alter anesthetic state transitions d Neurons controlling sleep-wake states do not necessarily mediate general anesthesia
Recently, a novel type of fast cortical oscillatory activity that occurs between 110 and 160 Hz (high-frequency oscillations (HFO)) was described. HFO are modulated by the theta rhythm in hippocampus and neocortex during active wakefulness and REM sleep. As theta-HFO coupling increases during REM, a role for HFO in memory consolidation has been proposed. However, global properties such as the cortex-wide topographic distribution and the cortico-cortical coherence remain unknown. In this study, we recorded the electroencephalogram during sleep and wakefulness in the rat and analyzed the spatial extent of the HFO band power and coherence. We confirmed that the HFO amplitude is phase-locked to theta oscillations and is modified by behavioral states. During active wakefulness, HFO power was relatively higher in the neocortex and olfactory bulb compared to sleep. HFO power decreased during non-REM and had an intermediate level during REM sleep. Furthermore, coherence was larger during active wakefulness than non-REM, while REM showed a complex pattern in which coherence increased only in intra and decreased in inter-hemispheric combination of electrodes. This coherence pattern is different from gamma (30-100 Hz) coherence, which is reduced during REM sleep. This data show an important HFO cortico-cortical dialog during active wakefulness even when the level of theta comodulation is lower than in REM. In contrast, during REM, this dialog is highly modulated by theta and restricted to intra-hemispheric medial-posterior cortical regions. Further studies combining behavior, electrophysiology and new analytical tools are needed to plunge deeper into the functional significance of the HFO.
During cognitive processes, there are extensive interactions between various regions of the cerebral cortex. Oscillations in the gamma frequency band (30-100 Hz) of the electroencephalogram are involved in the binding of spatially separated but temporally correlated neural events, which results in a unified perceptual experience.Like wakefulness, REM sleep is characterized by gamma oscillations in the EEG. Dreams, that are considered a special type of cognitive activity or protoconsciousness, mostly occur during this state.The power of the gamma band, assessed by the fast Fourier transform, reflects the local degree of synchronization at that frequency. On the other hand, the extent of interactions between different cortical areas at the gamma frequency band can be explored by means of a mathematical function called 'coherence', which reflects the 'strength' of functional interactions between cortical areas.The objective of the present report was to study in the rat the dynamic relationship between gamma power and coherence in the low (30-48 Hz) and high (52-98 Hz) gamma bands during waking and sleep, in occipital, parietal, and frontal neocortical areas, as well as in the olfactory bulb, that is a critical site of gamma rhythmgenesis. In addition, we re-analyzed previous recordings in cats, in order to evaluate the same dynamic relationship as in rats. In both species, the main result was that during REM sleep, gamma power increased, while gamma coherence between distant neocortical areas decreased. The fact that this profile is present in rodenthia as well as in carnivora suggests that this is a trait that characterize REM sleep in mammals.
Aging is associated with impairment in postural control in humans. While dogs are a powerful model for the study of aging, the associations between age and postural control in this species have not yet been elucidated. The aims of this work were to establish a reliable protocol to measure center of pressure excursions in standing dogs and to determine age-related changes in postural sway. Data were obtained from 40 healthy adult dogs (Group A) and 28 senior dogs (Group B) during seven trials (within one session of data collection) of quiet standing on a pressure sensitive walkway system. Velocity, acceleration, root mean square, 95% ellipse area, range and frequency revolve were recorded as measures of postural sway. In Group A, reliability was assessed with intraclass correlation, and the effect of morphometric variables was evaluated using linear regression. By means of stepwise linear regression we determined that root mean square overall and acceleration in the craniocaudal direction were the best variables able to discriminate between Group A and Group B. The relationship between these two center-of-pressure (COP) measures and the dogs’ fractional lifespan was examined in both groups and the role of pain and proprioceptive deficits was evaluated in Group B. All measures except for frequency revolve showed good to excellent reliability. Weight, height and length were correlated with most of the measures. Fractional lifespan impacted postural control in Group B but not Group A. Joint pain and its interaction with proprioceptive deficits influence postural sway especially in the acceleration in the craniocaudal direction, while fractional lifespan was most important in the overall COP displacement. In conclusion, our study found that pressure sensitive walkway systems are a reliable tool to evaluate postural sway in dogs; and that postural sway is affected by morphometric parameters and increases with age and joint pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.