Aflatoxins (AF) are a major problem in broiler production and are significant economic and public health burdens worldwide. A commercial sodium bentonite (Na-B) adsorbent was used to prevent the effect of AF [50 µg of aflatoxin B₁ (AFB₁)/kg of feed] in broiler productivity, biochemical parameters, macroscopic and microscopic liver changes, and AFB₁ liver residues. The influence of Na-B (0.3%) and monensin (MON, 100 mg/kg), alone or in combination, was investigated in depth. The dietary treatments were as follows: treatment (T) 1: basal diet (B); T2: B + MON; T3: B + Na-B; T4: B + Na-B + MON; T5: B + AFB₁; T6: B + AFB₁ + Na-B + MON; T7: B + AFB₁ + MON; T8: B + AFB₁ + Na-B. Birds were fed dietary treatments for 28 d (d 18 to 46). No significant differences (P < 0.05) were observed among treatments with respect to broiler performance, biochemical parameters, or relative liver weights. With the exception of T8, all livers showed histopathological alterations, with accumulation of fat vacuoles. The normal appearance of livers from T8 showed the protective effect of Na-B against aflatoxicosis. The residual AFB₁ levels in livers from T5 to T8 ranged from 0.2 to 1.0 ng/g and were higher in livers from T6 (P < 0.05). Results of this study indicate a competition between AFB₁ and MON for adsorption sites on Na-B when feed contains low levels of the toxin, indicating a nonselective adsorption capacity of this particular Na-B. In addition, significant levels of AFB₁ in livers indicate that this determination is an important technique not only for diagnosis of aflatoxicosis in broilers, but also for quality control of avian products.
Clay feed additives have been increasingly incorporated into animal diets to prevent aflatoxicosis. Due to the nonselective nature of the binding interaction, many important components of the diets could also be made unavailable because of these feed additives. The anticoccidial monensin (MON) could also be sequestered by these clays. The use of sodium bentonite (Na-B) from a mine in the province of Mendoza, Argentina, was investigated as a sequestering agent to prevent the effects of 100 µg/kg of dietary aflatoxin B(1) (AFB(1)). In vitro studies demonstrated that the above Na-B was a good candidate to prevent aflatoxicosis. They also showed that MON competes with AFB(1) for the adsorption sites on the clay surface and effectively displaces the toxin when it is in low concentration. Even though the levels of MON in diets, approximately 55 mg/kg, are high enough to not be significantly changed as a consequence of the adsorption, they can further affect the ability of the clays to bind low levels of AFB(1). An in vivo experiment carried out with poultry showed that 100 µg/kg of AFB(1) does not significantly change productive or biochemical parameters. However, liver histopathology not only confirmed the ability of this particular Na-B to prevent aflatoxicosis but also the decrease of this capacity in the presence of 55 mg/kg of MON. This is the first report stressing this fact and further research should be performed to check if this behavior is a characteristic of the assayed Na-B or of this type of clay. On the other hand, the presence of MON should also be taken into account when assaying the potential AFB(1) binding ability of a given bentonite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.