Four complexes combining the {Ru(p-cym)} moiety (p-cym = para-cymene) with thiosemicarbazone (TSC) ligands containing the 5-nitrofuryl pharmacophore were investigated in vitro for their properties as prospective anti-tumour agents. The compounds are dimeric structures of general formula [Ru2(p-cym)2(L)2]X2 where X = Cl(-), PF6(-) and L = deprotonated 5-nitrofuraldehyde TSC (L1), and the N-methyl (L2), N-ethyl (L3) and N-phenyl (L4) derivatives. The precursor [RuCl2(p-cym)]2, all TSC ligands L1-L4and their corresponding complexes 1-4 were screened in vitro for their cytotoxicity against a range of human cancer cell lines (HL-60 acute promyelocytic leukemia, A2780 ovarian adenocarcinoma, MCF7 breast adenocarcinoma and PC3 grade IV prostate carcinoma). While the precursor complex was found to be inactive and L4 exhibited moderate activity only in the MCF7 cell line, the coordination of L4 to the {Ru(p-cym)} moiety remarkably enhanced the activity of the whole complex. In fact, complex 4 [Ru2(p-cym)2(L4)2]Cl2 was found to be the most active agent of the whole series, and was studied further (as well as complex 1 for comparison). Concerning the mode of action, the mechanism of cell death for both 1 and 4 seemed to be related to apoptotic processes, and they strongly interacted with tubulin (involved in the cell cycle) and with integrin (involved in the cytoskeleton formation). As an approach to their pharmacokinetics, the interaction of 1 and 4 with human serum albumin (HSA) was assessed. A quantitative model for the binding of 4 to HSA is proposed from Circular Dichroism data, and validated by fluorescence results. Models of Förster resonance energy transfer and fluorescence quenching afforded the distance of 4 to the lone Trp214 residue. Importantly, HSA binding enhanced the cytotoxicity of 4 and correlated well with the HSA binding data. Our results consistently indicate that [Ru2(p-cymene)2(L4)2]Cl2 is quite promising as a prospective metallodrug for cancer chemotherapy.
The compound [Ru3(mu-H)(mu3-eta2-ampy)(CO)9] (1; Hampy =2-amino-6-methylpyridine) reacts with diynes RC4R in THF at reflux temperature to give the ynenyl derivatives [Ru3(mu3-eta2-ampy)(mu-eta3-RC...CC-CHR)(mu-CO)2-(CO)6] (2: R=CH2OPh; 3: R=Ph). These products contain a 1,4-disubstituted butynen-3-yl ligand attached to two ruthenium atoms. The compound [Ru3(mu-eta2-ampy)[mu3-eta6-PhCC5(C...CPh)-HPh2](CO)7] (4), which contains an eta5-cyclopentadienyl ring and a bridging carbene fragment, has also been obtained from the reaction of 1 with diphenylbutadiyne. This compound arises from a remarkable [3+2] cycloaddition reaction of a preformed 1,4-diphenylbutynen-4-yl ligand with a triple bond of a second diphenylbutadiyne molecule. The reactivity of the ynenyl derivatives 2 and 3 with diynes and alkynes has been studied. In all cases, compounds of the general formula [Ru3(mu-eta2-ampy)[mu3-eta5-C(=CHR)C=CRCR1=CR2](CO)7] (5-17) have been obtained. They all contain a ruthenacyclopentadienyl fragment formed by coupling of the coordinated ynenyl ligand of 2 (R = CH2OPh) or 3 (R = Ph) with a triple bond of the new reagent (the CR1=CR2 fragment results from the incoming diyne or alkyne reagent). While most of the products derived from 2 have the alkenyl C=CHR fragment with a Z configuration (R cis to Ru), all the compounds obtained from 3 have this fragment with an E configuration. Except 2 and 3, all the cluster complexes described in this article have a five-electron donor ampy ligand attached to only two metal atoms, a coordination mode unprecedented in cluster chemistry.
The objective of this study was to evaluate the presence of Cronobacter sakazakii and microbiological parameters in dairy products associated with a food alert. Ninety dairy product samples were analyzed, including seven commercial brands and two product types (liquid and powdered) from four countries. Aerobic plate count (APC) and Enterobacteriaceae count were performed according to Chilean standards. Cronobacter spp. and C. sakazakii were identified by polymerase chain reaction real time amplification of rpoB and cgcA genes and the genotype by multilocus sequence typing. Eighty-eight percent of dairy products showed APC higher than the detection limit. Fifty percent of liquid commercial brand samples contained APC: 2.6, 2.3, 1.1, and 2.9 CFU/mL in brands A, C, E, and G, respectively. Results for powdered commercial brands were 3.0, 3.6, and 5.7 CFU/g in brands B, D, and F, respectively. Maximum count (5.7 CFU/g) occurred in brand F dairy product manufactured in Chile. Enterobacteriaceae were found in 55% of the samples, 64% in liquid and 51% in powdered commercial brands. In 50% of brands B, D, and E, samples contained 2.9, 2.8, and 2.7 log CFU/g, respectively. Only liquid commercial brands from the United States had Enterobacteriaceae values between 0.1 and 4.5 CFU/mL. Seventeen suspicious strains were isolated and nine were identified as Enterobacter spp. Only eight suspicious strains from four powdered commercial brands (Chile and Singapore) were confirmed as C. sakazakii by rpoB and cgcA gene amplification and fusA sequencing. C. sakazakii prevalence in the analyzed samples was 8.8%. There were 11% of powdered milk brands that contained APC between 4.0 and 4.7 log CFU/g and 55% of the samples contained Enterobacteriaceae. C. sakazakii was found in dairy products manufactured in Chile and Singapore. On the basis of this information, the Chilean Ministry of Health (RSA) decreed a national and international food alert and recalled all the product batches that resulted positive in the present study from supermarkets and pharmacies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.