Omega-3 eicosapentaenoic fatty acid (C20:5; EPA), β-glucan and fucoxanthin have received widespread attention owing to their potential industrial applications; however, their availability is currently limited to unsustainable sources such as fish oils and macroalgae. Though some species of diatoms are also a natural source of these metabolites, progress needs to be made in reducing the cost barriers involved in their large-scale production. The aim of the present study was therefore to assess the potential of the marine diatom Halamphora coffeaeformis to simultaneously accumulate EPA, chrysolaminarin and fucoxanthin in a raceway pond sustained by fertilizer (Bayfolan®)-enriched seawater. The biomass production increased significantly along the experiment, the specific growth rate, biomass productivity and areal yield being 2.03 day −1 , 0.128 g.L − 1.d −1 and 25.73 g.m −2 .d −1 , respectively. Proteins dominated in the first culture phase, while lipids, carbohydrates and pigments increased toward the end of the stationary phase. The harvested biomass presented 310 mg.g −1 DW (dry weight) of total lipids containing high amounts of EPA (24% of total fatty acids), 114 mg.g −1 DW of chrysolaminarin and 38 mg.g −1 DW of fucoxanthin. These values compare favorably with those obtained from commercially used sources. The culture medium proposed represents a non-conventional, cost-effective resource allowing for sustained high biomass levels throughout 22 days, guaranteeing the accumulation of valuable metabolites. Furthermore, the robustness and auto-flocculation capacity of the species increase the chances of viable scalability. These findings indicate the potential of H.coffeaeformis as a high-value metabolite feedstock, focusing on sustainable bioprocesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.