HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Land subsidence resulting from groundwater extractions is a global phenomenon adversely affecting many regions worldwide. Understanding the governing processes and mitigating associated hazards require knowing the spatial distribution of the implicated factors (piezometric levels, lithology, ground deformation), usually only known at discrete locations. Here, we propose a methodology based on the Kriging with External Drift (KED) approach to interpolate sparse point measurements of variables influencing land subsidence using high density InSAR measurements. In our study, located in the Alto Guadalentín basin, SE Spain, these variables are GPS vertical velocities and the thickness of compressible soils. First, we estimate InSAR and GPS rates of subsidence covering the periods 2003-2010 and 2004-2013, respectively. Then, we apply the KED method to the discrete variables. The resulting continuous GPS velocity map shows maximum subsidence rates of 13 cm/year in the center of the basin, in agreement with previous studies. The compressible deposits thickness map is significantly improved. We also test the coherence of Sentinel-1 data in the study region and evaluate the applicability of this methodology with the new satellite, which will improve the monitoring of aquifer-related subsidence and the mapping of variables governing this phenomenon.
We use continuous and campaign measurements from 215 GPS sites in northern Central America and southern Mexico to estimate coseismic and afterslip solutions for the 2009 M w = 7.3 Swan Islands fault strike-slip earthquake and the 2012 M w = 7.3 El Salvador and M w = 7.4 Guatemala thrust-faulting earthquakes on the Middle America trench. Our simultaneous, time-dependent inversion of more than 350 000 daily GPS site positions gives the first jointly consistent estimates of the coseismic slips for all three earthquakes, their combined time-dependent post-seismic effects and secular station velocities corrected for both the coseismic and post-seismic deformation. Our geodetic slip solutions for all three earthquakes agree with previous estimates that were derived via static coseismic-offset modelling. Our time-dependent model, which attributes all transient post-seismic deformation to earthquake afterslip, fits nearly all of the continuous GPS site position time-series within their severalmillimetre position noise. Afterslip moments for the three earthquakes range from 35 to 140 per cent of the geodetic coseismic moments, with the largest afterslip estimated for the 2012 El Salvador earthquake along the weakly coupled El Salvador trench segment. Forward modelling of viscoelastic deformation triggered by all three earthquakes for a range of assumed mantle and lower crustal viscosities suggests that it accounts for under 20 per cent of the observed post-seismic deformation and possibly under 10 per cent. Our results thus point to afterslip as the primary and perhaps dominant mode of post-seismic deformation for these
This paper presents the results and conclusions obtained from new GPS data compiled along the El Salvador Fault Zone (ESFZ). We calculated a GPS-derived horizontal velocity field representing the present-day crustal deformation rates in the ESFZ based on the analysis of 30 GPS campaign stations of the ZFESNet network, measured over a 4.5 year period from 2007 to 2012. The velocity field and subsequent strain rate analysis clearly indicate dextral strike-slip tectonics with extensional component throughout the ESFZ. Our results suggest that the boundary between the Salvadoran forearc and Caribbean blocks is a deformation zone which varies along the fault zone. We estimate that the movement between the two blocks is at least ~12 mm yr-1. From west to east, this movement is variably distributed between faults or segments of the ESFZ. We propose a kinematic model with three main blocks; the Western, Central and Eastern blocks delimited by major faults. For the first time, we were able to provide a quantitative measure of the present-day horizontal geodetic slip rate of the main segments of ESFZ, ranging from ~2 mm yr-1 in the east segment to ~8 mm yr-1 , in the west and central segments. This study contributes new kinematic and slip rate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.