Nevertheless, between 1985Nevertheless, between and 1997Nevertheless, between and between 1997Nevertheless, between and 2007, the estimated number of sea lions showed a stable or slightly negative trend of 0.4 ± 0.1 % yr -1 and 0.5 ± 0.1 % yr -1 , respectively. We suggest that the overexploitation and decline of the principal fisheries in Central Chile could adversely impact the abundance and distribution of the South American sea lion in the study area.Key words: census, Chilean coast, Otaria flavescens, overexploitation, sea lions. RESUMENSe estimó la distribución y la abundancia poblacional del lobo marino común Otaria flavescens en la costa de Chile central durante los meses de enero y febrero de 2007. Adicionalmente, se analizaron los cambios en la abundancia de esta especie durante el período 1970-2007. Los censos poblacionales se basaron en fotografías tomadas desde embarcaciones menores o desde avionetas. Se contabilizaron un total de 16301 lobos marinos (IC = 16209-16375) en 33 colonias (6 reproductivas y 27 no reproductivas). Después de corregir por la proporción de animales en el agua y por crías no registradas al momento del censo, se estimó una abundancia promedio de 18179 (95 % IC = 17777-18851) lobos marinos en el área de estudio. El análisis de tendencia poblacional presentó que desde 1970 a 1985 la abundancia del lobo marino común mostró un crecimiento positivo de aproximadamente 2.1 % año -1 . Sin embargo, entre 1985 y 1997, y entre 1997 y 2007, el número de lobos marinos muestra una tendencia estable o ligeramente negativa de 0.4 ± 0.1 % año -1 y 0.5 ± 0.1 % año -1 , respectivamente. Se sugiere que la sobreexplotación y la declinación de las principales pesquerías en la zona central de Chile podrían haber impactado negativamente la distribución y abundancia del lobo marino común en el área de estudio.
We tested the validity of Bergmann's rule and Rosenzweig's hypothesis through an analysis of the geographical variation of the skull size of Otaria flavescens along the entire distribution range of the species (except Brazil). We quantified the sizes of 606 adult South American sea lion skulls measured in seven localities of Peru, Chile, Uruguay, Argentina, and the Falkland/Malvinas Islands. Geographical and environmental variables included latitude, longitude, and monthly minimum, maximum, and mean air and ocean temperatures. We also included information on fish landings as a proxy for productivity. Males showed a positive relationship between condylobasal length (CBL) and latitude, and between CBL and the six temperature variables. By contrast, females showed a negative relationship between CBL and the same variables. Finally, female skull size showed a significant and positive correlation with fish landings, while males did not show any relationship with this variable. The body size of males conformed to Bergmann's rule, with larger individuals found in southern localities of South America. Females followed the converse of Bergmann's rule at the intraspecific level, but showed a positive relationship with the proxy for productivity, thus supporting Rosenzweig's hypothesis. Differences in the factors that drive body size in females and males may be explained by their different life-history strategies. Our analyses demonstrate that latitude and temperature are not the only factors that explain spatial variation in body size: others such as food availability are also important for explaining the ecogeographical patterns found in O. flavescens.
Biogeochemical processes in fjords are likely affected by changes in surrounding glacier cover but very little is known about how meltwater directly influences dissolved organic matter (DOM) in fjords. Moreover, the data available are restricted to a handful of northern hemisphere sites. Here we analyze seasonal and spatial variation in dissolved organic carbon (DOC) concentration and DOM composition (spectrofluorescence, ultrahigh resolution mass spectrometry) in Baker-Martinez Fjord, Chilean Patagonia (48°S), to infer the impacts of rapid regional deglaciation on fjord DOM. We show that surface layer DOC concentrations do not vary significantly between seasons, but DOM composition is sensitive to differences in riverine inputs. In summer, higher protein-like fluorescence reflects increased glacial meltwater inputs, whilst molecular level data show weaker influence from marine DOM due to more intense stratification. We postulate that the shifting seasonal balance of riverine and marine waters affects the supply of biolabile peptides and organic nitrogen cycling in the surface layer. Trends in DOM composition with increasing salinity are consistent with patterns in estuaries (i.e. preferential removal of aromatic compounds and increasing relative contribution of unsaturated and heteroatom-rich DOM from marine sources). Preliminary estimates also suggest that at least 10% of the annual organic carbon stock in this fjord is supplied by the four largest, glacially fed rivers and that these inputs are dominated by dissolved (84%) over particulate organic carbon. Riverine DOC may therefore be an important carbon subsidy to bacterial communities in the inner fjord. The overall findings highlight the biogeochemical sensitivity of a Patagonian fjord to changes in glacier melt input, which likely has relevance for other glaciated fjords in a warming climate.
Proglacial rivers have been shown to have distinctive silicon (Si) isotope compositions, providing new insights into the mechanisms controlling Si cycling in the subglacial environment and suggesting terrestrial Si isotope exports may have varied between glacial and interglacial periods. However, Si isotope data are currently limited to a small number of glacial systems in the northern hemisphere, and it is unclear how compositions might vary across a spectrum of glacial influence. Using Chilean Patagonia as a unique natural laboratory, we present Si isotope compositions of 0.45 μm filtered (fSi), 0.02 μm filtered (DSi), and reactive amorphous (ASi) fractions from 40 river catchments with variable glacial cover and explore the key controls on Si cycling. The 0.45 μm filtered glacier-fed river samples displayed isotopically light compositions and a positive linear correlation with upstream glacial cover. This relationship was controlled by the inclusion of an isotopically light colloidal-nanoparticulate (0.02–0.45 μm) silicate phase that was only present in glacier-fed rivers and dominated Si budgets in these catchments. This phase was predominately composed of feldspars and its lability in seawater is uncertain, representing a significant unknown in resolving glacial Si isotope exports from this region. When the colloidal-nanoparticulates were removed from solution by ultra-filtration, the resultant DSi isotope compositions of glacier-fed catchments were not isotopically distinct from some non-glacial rivers and exhibited no clear relationship with glacial cover. The colloidal-nanoparticulate concentration of other weathering-sensitive elements (Li, Mg, Ba, Sr) also showed a linear relationship with glacial cover, suggesting that their isotopic compositions could be affected in a similar manner. These findings highlight the benefit of size-fractionated sampling and the need for more research to understand the lability of colloidal-nanoparticulate species, especially in glacier-fed rivers. Finally, we explore the controls on river ASi isotope compositions and show how including these reactive particulate phases is critical to quantifying terrestrial Si isotope budgets, both in Patagonia and other global regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.