Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications.
Glass slides have been widely used for DNA immobilization in DNA microarray and numerous bioassays for decades, whereas they are faced with limitations of low probe density, time-consuming modification steps, and expensive instruments. In this work, a simple one-step surface modification method using 3-aminopropyl trimethoxysilane (APTMS) has been developed and applied to graft DNA codes on paper. Higher DNA immobilization efficiency was obtained in comparison with that in a conventional method using glass slides. Fluorescence detection, X-ray photoelectron spectroscopy (XPS), infrared spectra (FT-IR), and pH influence studies were employed to characterize the surface modification and subsequent DNA immobilization, which further reveals a mechanism in which this method lies in ionic interactions between the positively charged APTMS-modified paper surface and negatively charged DNA probes. Furthermore, an APTMS-modified paper-based device has been developed to demonstrate application in low-cost detection of a foodborne pathogen, Giardia lamblia, with high sensitivity (the detection limit of 22 nM) and high specificity. Compared with conventional methods using redundant cross-linking reactions, our method is simpler, faster, versatile, and lower-cost, enabling broad applications of paper-based bioassays especially for point-of-care detection in resource-poor settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.