Tropical forests are major sources of global terrestrial evapotranspiration (ET), but these heterogeneous landscapes pose a challenge for continuous estimates of ET, so few studies are conducted, and observation gaps persist. New spaceborne products such as ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) are promising tools for closing such observation gaps in understudied tropical areas. Using ECOSTRESS ET data across a large, protected tropical forest region (2250 km2) situated on the western slope of the Andes, we predicted ET for different days. ET was modeled using a random forest approach, following best practice workflows for spatial predictions. We used a set of topographic, meteorological, and forest structure variables from open-source products such as GEDI, PROBA-V, and ERA5, thereby avoiding any variables included in the ECOSTRESS L3 algorithm. The models indicated a high level of accuracy in the spatially explicit prediction of ET across different locations, with an r2 of 0.61 to 0.74. Across all models, no single predictor was dominant, and five variables explained 60% of the models’ results, thus highlighting the complex relationships among predictor variables and their influence on ET spatial predictions in tropical mountain forests. The leaf area index, a forest structure variable, was among the three variables with the highest individual contributions to the prediction of ET on all days studied, along with the topographic variables of elevation and aspect. We conclude that ET can be predicted well with a random forest approach, which could potentially contribute to closing the observation gaps in tropical regions, and that a combination of topography and forest structure variables plays a key role in predicting ET in a forest on the western slope of the Andes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.