The causal agent of bacterial wilt, Ralstonia solanacearum, is a soilborne pathogen that invades plants through their roots, traversing many tissue layers until it reaches the xylem, where it multiplies and causes plant collapse. The effects of R. solanacearum infection are devastating, and no effective approach to fight the disease is so far available. The early steps of infection, essential for colonization, as well as the early plant defense responses remain mostly unknown. Here, we have set up a simple, in vitro Arabidopsis thaliana–R. solanacearum pathosystem that has allowed us to identify three clear root phenotypes specifically associated to the early stages of infection: root-growth inhibition, root-hair formation, and root-tip cell death. Using this method, we have been able to differentiate, on Arabidopsis plants, the phenotypes caused by mutants in the key bacterial virulence regulators hrpB and hrpG, which remained indistinguishable using the classical soil-drench inoculation pathogenicity assays. In addition, we have revealed the previously unknown involvement of auxins in the root rearrangements caused by R. solanacearum infection. Our system provides an easy-to-use, high-throughput tool to study R. solanacearum aggressiveness. Furthermore, the observed phenotypes may allow the identification of bacterial virulence determinants and could even be used to screen for novel forms of early plant resistance to bacterial wilt.
Efficacy and efficiency of pesticide application in the field through the foliage still faces many challenges. There exists a mismatch between the hydrophobic character of the leaf and the active molecule, low dispersion of the pesticides on the leaves' surface, runoff loss and rolling down of the active molecules to the field, decreasing their efficacy and increasing their accumulation to the soil. We produced bacterial cellulose-silver nanoparticles hybrid patches by in situ thermal reduction under microwave irradiation in a scalable manner and obtaining AgNPs strongly anchored to the BC. Those hybrids increase the interaction of the pesticide (AgNPs) with the foliage and avoids runoff loss and rolling down of the nanoparticles. The positive anti-bacterial and anti-fungal properties were assessed in vitro against the bacteria Escherichia coli and two agro-economically relevant pathogens: the bacterium Pseudomonas syringae and the fungus Botrytis cinerea. We showed in vivo inhibition of the infection in Nicotiana benthamiana and tomato leaves, as proven by the suppression of the expression of defense molecular markers and reactive oxygen species production. The hydrogel-like character of the bacterial cellulose matrix increases the adherence to the foliage of the patches.
Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host’s root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated to the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a Genome-Wide Association Study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role of cytokinin in root immunity, paving the way for future research that will help understanding the mechanisms underpinning root defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.