Ceramic phosphor plates of cerium (Ce3+)‐doped oxyfluoride were fabricated by the solid‐state reaction method. These phosphors exhibit efficient emission, with the novel feature of color tuning by varying both the doping concentration and excitation wavelength. As the Ce3+ concentration increases, the excitation spectrum broadens by a factor of 1.6, and the excitation peak wavelength shifts from 390 to 435 nm, and there is a variation in excitation energy of ~ 10%. Luminescence spectrum of low Ce3+ concentration samples is tuned from blue to green with the change of excitation wavelength. The emission peak exhibits a shift of 58 nm into the red spectral region, varying the Ce3+ concentration from 0.05 to 0.1 mol%; whereas this shift is only 6 nm when Ce3+ content changes from 0.25 to 1 mol%. Photoluminescence (PL) quantum yield has achieved 76%. The crystal structure was examined using X‐ray diffraction to explain its possible influence on the redshift luminescence. A proof of concept of white LED was constructed using a 450 nm blue LED chip with an oxyfluoride phosphor plate, showing a luminous efficacy (LE) of 64 lm/W with a color rendering index of 74.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.